National Safety Code

Standard 6: Determining Driver Fitness in Canada

Part 1: A Model for the Administration of Driver Fitness Programs

and

Part 2: CCMTA Medical Standards for Drivers
Foreword

Driving a motor vehicle in Canada is a privilege that may be accorded to an individual by the driver licensing authority of the province or territory in which they live. In order to exercise a privilege such as driving, the individual must meet the specified criteria including the demonstration of an acceptable level of competence. To qualify for a driver’s licence an individual must, among other requirements, be able to demonstrate medical fitness to drive.

Part 1 of this document explains how Canadian jurisdictions perform their role in assessing the medical fitness of drivers while Part 2 contains the Canadian Council of Motor Transport Administrators (CCMTA) Medical Standards for Drivers.

This document is the result of a lengthy and intensive process, begun in 2006 and results in the first publication in 2012 that reflects CCMTA’s commitment to:

- base its medical standards on the best evidence available
- focus on functional ability to drive rather than exclusively on medical diagnoses, and to
- respond to case law establishing that Canadian licensing authorities must assess individually each driver’s fitness to drive.

These guidelines and standards reflect Canadian jurisdictions’ continuing commitment to public safety while allowing drivers to drive as long as they can demonstrate safe driving practices. This version was published in 2020.

Acknowledgements and Thanks

The production of this document was a result of a collaboration of representatives of all of the provinces and territories and many individuals from these jurisdictions with various expertise contributed to the final product.

However, CCMTA would also like to specifically thank the province of British Columbia which provided the model for driver fitness, the scientific framework upon which these standards are based.
Table of Contents

BACKGROUND .. 1

Chapter 1: Introduction .. 2
1.1 Objective .. 2
1.2 How this document is organized ... 2

Chapter 2: The authority for the CCMTA standards .. 3
2.1 Canadian Council of Motor Transport Administrators .. 3
2.2 Mandate of the CCMTA Driver Fitness Overview Group (DFOG) 4
2.3 The relationship between individual Canadian jurisdictions’ driver fitness policies and the CCMTA standards ... 5
2.4 The relationship between Canadian jurisdictions’ driver fitness standards for commercial drivers, the CCMTA standards and the North American Free Trade Agreement ... 6

Chapter 3: Roles and responsibilities in driver fitness ... 8
3.1 Government driver-licensing authorities ... 8
3.2 Health professionals .. 8
3.3 Allied health professionals .. 8

Chapter 4: A changing approach to determining driver fitness .. 8

Chapter 5: Guiding principles ... 9
5.1 Principle 1 - Risk management ... 9
5.2 Principle 2 - Functional approach .. 10
5.3 Principle 3 - Individual assessment ... 10
5.4 Principle 4 – Reviewing and considering the best information available 11

PART 1 A MODEL FOR ADMINISTRATION OF .. 12

DRIVER FITNESS PROGRAMS .. 12

Chapter 1: Introduction .. 13

Chapter 2: Definitions ... 15

Chapter 3: Key concepts ... 18
3.1 Functional ability and driving outcomes ... 18
3.2 Types of impairments ... 18
3.3 Important considerations when determining fitness ... 20
3.4 Functions needed for driving ... 21

Chapter 4: Identifying drivers who may not be fit to drive ... 26
4.1 Overview ... 26
4.2 All drivers .. 28
4.3 Non-commercial drivers (Class 5, 6, 7) ... 28
4.4 Commercial drivers ... 30
4.5 Cancelling or restricting a licence because of an immediate public safety risk 31

Chapter 5: Assessing fitness to drive .. 32
5.1 Overview ... 32
5.2 Requesting functional assessments .. 34
5.3 Requesting medical assessments .. 34
5.4 Assessing the cognitive functions needed for driving .. 35
5.5 Assessing motor function .. 36
5.6 Assessing sensory function – vision .. 37
5.7 Assessing sensory function – hearing ... 38
5.8 Assessing drivers with multiple functional impairments 38
5.9 Assessing drivers with multiple medical conditions ... 39
5.10 Time period during which assessments are valid ... 40
5.11 Time limits for drivers to complete assessments .. 40

Chapter 6: Making a driver fitness determination ... 42
6.1 Overview .. 42
6.2 Sources of information to consider for making a driver fitness determination 44
6.3 Considering persistent impairments ... 44
6.4 Considering episodic impairments .. 45
6.5 Considering imposing conditions .. 45
6.6 Considering specific requirements for commercial drivers 46
6.7 Considering whether the driver can compensate .. 47
6.8 Considering insight ... 47
6.9 Considering compliance with existing treatment regime 48
6.10 Considering compliance with existing conditions of licence 49
6.11 Considering the driving record ... 49

Chapter 7: Reassessment .. 50
7.1 Routine reassessment intervals – commercial drivers 52
7.2 Routine reassessment intervals – non-commercial drivers 52
7.3 Determining whether reassessment is required (other than routine) 52
7.4 Setting the reassessment interval ... 54

PART 2: CCMTA .. 56
MEDICAL STANDARDS FOR DRIVERS .. 56
Summary of Chapters and Medical Conditions ... 57

Chapter 1: Introduction ... 58
1.1 Purpose of this part .. 58
1.2 Source of the medical condition chapters ... 58
1.3 Medical condition chapter template ... 58

Chapter 2: Medical conditions at-a-glance .. 61

Chapter 3: Cardiovascular disease and disorders ... 62
3.1 About cardiovascular disease .. 62
3.2 Prevalence .. 64
3.3 Cardiovascular disease and adverse driving outcomes 64
3.4 Effect of cardiovascular disease on functional ability to drive 65
3.5 Compensation .. 66
3.6 Guidelines for assessment ... 67
3.6.2 Acute Coronary Syndromes – Non-commercial drivers 68

Chapter 4: Cerebrovascular disease .. 105
4.1 About cerebrovascular disease ... 105
4.2 Prevalence .. 106
4.3 Cerebrovascular disease and adverse driving outcomes 107
4.4 Effect on functional ability to drive .. 108
4.5 Compensation .. 109
4.6 Guidelines for assessment ... 110

Chapter 5: Chronic renal disease .. 114
5.1 About chronic renal disease ... 114
Chapter 12: Neurological disorders
12.1 About neurological disorders
12.2 Prevalence
12.3 Neurological disorders and adverse driving outcomes
12.4 Effect on functional ability to drive
12.5 Compensation
12.6 Guidelines for assessment

Chapter 13: Peripheral vascular diseases
13.1 About peripheral vascular diseases
13.2 Prevalence
13.3 Peripheral vascular diseases and adverse driving outcomes
13.4 Effect on functional ability to drive
13.5 Compensation
13.6 Guidelines for assessment

Chapter 14: Psychiatric disorders
14.1 About psychiatric disorders
14.2 Prevalence
14.3 Psychiatric disorders and adverse driving outcomes
14.4 Effect on functional ability to drive
14.5 Compensation
14.6 Guidelines for assessment

Chapter 15: Drugs, alcohol and driving
15.1 About drugs, alcohol and driving
15.2 Prevalence
15.3 Psychotropic drugs, alcohol and adverse driving outcomes
15.4 Effect on functional ability to drive
15.5 Compensation
15.6 Guidelines for assessment

Chapter 16: Respiratory diseases
16.1 About respiratory diseases
16.2 Prevalence
16.3 Respiratory diseases and adverse driving outcomes
16.4 Effect on functional ability to drive
16.5 Compensation
16.6 Guideline for assessment

Chapter 17: Seizures and epilepsy
17.1 About seizures and epilepsy
17.2 Prevalence
17.3 Seizures, epilepsy and adverse driving outcomes
17.4 Effect on functional ability to drive
17.5 Compensation
17.6 Guideline for assessment

Chapter 18: Sleep disorders
18.1 About sleep disorders
18.2 Prevalence
18.3 Sleep disorders and adverse driving outcomes .. 228
18.4 Effect on functional ability to drive ... 228
18.5 Compensation .. 229
18.6 Guideline for assessment .. 229

Chapter 19: Syncope ... 233
19.1 About syncope ... 233
19.2 Prevalence .. 234
19.3 Syncope and adverse driving outcomes ... 234
19.4 Effect on functional ability to drive ... 234
19.5 Compensation .. 234
19.6 Guideline for Assessment ... 235

Chapter 20: Traumatic brain injury ... 243
20.1 About traumatic brain injury .. 243
20.2 Prevalence .. 244
20.3 Traumatic brain injury and adverse driving outcomes 244
20.4 Effect on functional ability to drive ... 244
20.5 Compensation .. 244
20.6 Guidelines for assessment ... 245

Chapter 21: Vestibular disorders ... 246
21.1 About vestibular disorders .. 246
21.2 Prevalence .. 248
21.3 Vestibular disorders and adverse driving outcomes 248
21.4 Effect on functional ability to drive ... 249
21.5 Compensation .. 250
21.6 Guideline for assessment ... 251

Chapter 22: Vision impairment ... 255
22.1 About vision impairment .. 255
22.2 Prevalence .. 264
22.3 Vision impairments and adverse driving outcomes 266
22.4 Effect on functional ability to drive ... 268
22.5 Compensation .. 268
22.6 Guidelines for assessment ... 270
22.7 Standards for testing visual functions ... 275

Chapter 23: Medical Review for Drivers ... 278

PART 3: ... 279

APPENDICES .. 279

Appendix 1: Canadian Driver Licence Classes ... 280
Appendix 2: Canada – US Reciprocity Agreement .. 281
Appendix 3: Provincial/Territorial Contact Information 282
BACKGROUND
Chapter 1: Introduction

1.1 Objective

Many jurisdictions throughout the world publish their medical standards for drivers. For some, their publication is a simple compendium of the standards with little or no explanations. Others provide detailed guidelines on the interpretation of the standards.

The working group that produced this document were unable to identify any jurisdictional publications that examine the procedures used by the driver licensing authority to apply the standards. Consequently, Part 1 of this document is a model for and applied by Canadian driver-licensing authorities in the determination of fitness to drive. Application of the guidelines contained in Part 1 will facilitate a consistent approach to driver fitness decision-making by provincial and territorial government driver licensing authorities across Canada.

Part 2 of this document contains the medical standards themselves as well as the supporting material clarifying the reasons for the standard including background material on the medical conditions and their effects upon driving.

1.2 How this document is organized

This document consists of 4 sections:

Background

Provides the context for the standards outlined in Parts 1 and 2.

Part 1, A Model for the Administration of Driver Fitness Programs.

Provides guidelines and a process model for driver-licensing authorities to follow during the driver fitness determination process.

Part 2: CCMTA Medical Standards for Drivers.

Contains the standards for the different medical conditions that may influence driving fitness.

Appendices

- **Appendix 1: Licence classes**, describes the vehicles that may be driven by commercial and non-commercial drivers
- **Appendix 2: Reciprocity Agreement between Canada and the United States** contains information on the letters between Canada and the US that outline the driver fitness expectations for Canadian commercial vehicle drivers that drive in the U.S.
Chapter 2: The authority for the CCMTA standards

2.1 Canadian Council of Motor Transport Administrators

The Canadian Council of Motor Transport Administrators (CCMTA) coordinates all matters dealing with the administration, regulation and control of motor vehicle transportation and highway safety. Membership includes representation from provincial and territorial governments as well as the federal government of Canada.

CCMTA supports its members' vision to have the safest and most efficient movement of people and goods by road in the world. It is the custodian of the National Safety Code, and as reflected in its mission, provides collaborative leadership in the areas of Road Safety Research and Policy, Drivers and Vehicles and Compliance and Regulatory Affairs.

Through a collective consultative process, CCMTA makes decisions on administration and operational matters dealing with licensing, registration and control of motor vehicle transportation and highway safety.

CCMTA’s 14 members are elected from all provincial/territorial governments as well as the federal government. CCMTA is accountable to:

- the Council of Deputy Ministers and Ministers responsible for Transportation and Highway Safety for providing advice and making recommendations on matters relating to transportation and highway safety
- the provinces, territories and the federal government, for promoting a better understanding and cooperation in all matters related to transportation and highway safety among each other, as well as other organizations where there exists a mutual interest
- its stakeholders, for maintaining an ongoing dialogue and consultation to ensure CCMTA is responsive and informative.

Reporting to the CCMTA Board, the work of CCMTA is conducted by three program committees. Their mandates are as follows:

The Program Committee on Drivers and Vehicles is responsible for all matters relating to motor vehicles registration and control, light vehicle standards and inspections, and driver licensing and control.
The Program Committee on Compliance and Regulatory Affairs is responsible for compliance activities related to commercial drivers and vehicles, transportation of dangerous goods and motor carrier operations.

The Program Committee on Road Safety Research and Policies is tasked with coordination of federal provincial and territorial road safety efforts, preparation of recommendations in support of road safety programs, and development of overall expertise and actions plan to prevent road accidents and reduce their consequences.

CCMTA maintains a relationship with stakeholders from the private sector and other government departments through its Associate program. These individuals provide expertise and opinions in the development of strategies and programs.

CCMTA's Vision is to have the safest and most efficient movement of people and goods by road in the world.

2.2 Mandate of the CCMTA Driver Fitness Overview Group (DFOG)

The Driver Fitness Overview Group reports to the CCMTA Program Committee on Drivers and Vehicles. Members are a mix of various types of expertise on driver fitness and consist of administrators and health care professionals representing the licensing authorities.

The mandate of the CCMTA DFOG is to derive a set of driver fitness policies for jurisdictional use that incorporate the best ideas and principles included in the literature and to maintain its currency through periodic review. Balancing road safety and mobility needs of Canadians through collaborative development and application of world class driver medical fitness standards and operational processes based on best-evidence

Specific responsibilities include:

- Recommending uniform medical standards to be used by administrators in assessing medical fitness to operate a motor vehicle
- Coordinating and communicating research that informs the maintenance of the CCMTA guide medical standards
- Sharing operational information, processes, and efficiencies as well as research, and best practice
- Developing strategies for all driver medical fitness assessment using a driver fitness model based on a functional approach to determine the impact on the functions of driving
- Coordinating the work of any specific sub-groups
- Maintaining and managing the CCMTA Medical Standards document
• Act as liaison on behalf of CCMTA with other organizations (e.g.: Canadian Medical Association, U.S. Federal Highway Administration (FMCSA), medical specialty societies). Also liaise with all CCMTA standing committees. Representatives from these committees and organizations may be invited to participate in the proceedings of the group
• Act as a clearing house for all activities under its purview
• Identifying areas of concern and direct activities accordingly

2.3 The relationship between individual Canadian jurisdictions’ driver fitness policies and the CCMTA standards

All Canadian provinces and territories have the authority to establish their own driver fitness policies and procedures. All have a medical review board or unit acting in an advisory capacity to the jurisdiction's licensing body on medical matters that may affect a person's fitness to drive. However, in order to support a consistent approach to driver fitness across the country, the provinces and territories have agreed to publish the CCMTA Medical Standards for Drivers.

In 1985, medical standards for drivers were included as part of the National Safety Code (NSC) initiative undertaken to achieve uniformity among the provinces and territories on many aspects relating to the administration of drivers and vehicles. The rationale being that licence transfers upon a change of province of residence should not be complicated by divergent medical requirements.

The classification of driver licences adopted by the provinces and territories as part of the NSC is shown in Appendix 1 and is used by all the Canadian jurisdictions except Ontario.

A Medical Advisory Committee (MAC), comprised of physicians appointed by each jurisdiction, was created to identify and reconcile interprovincial medical standard variances and produce a harmonized standard. The basis for developing the harmonized medical standards was primarily publications from the Canadian Medical Association (CMA) and other medical speciality associations.

In 2000, CCMTA created a Driver Fitness Project Group to carry out a standards review that focused on risk, compensation, accommodation, functional focus and how to apply each medical standard. This approach reflected recent trends relating to evidence-based medicine rather than consensual standards in determining an individual’s fitness to drive.
The Driver Fitness Overview Group in 2008 was given a mandate to:

(i) consolidate the work of the MAC and Driver Fitness Project Group to avoid
duplicate work, duplicate reporting and record keeping and to house all medical-related issues under the same umbrella, and
(ii) produce one central CCMTA medical document.

In 2011 the Driver Fitness Overview Group developed new driver fitness standards in conjunction with subject-matter experts including researchers, general practitioners, medical specialists and administrators from Canadian driver licensing authorities. The standards are intended as a guide in establishing basic medical qualifications to drive for both commercial and non-commercial drivers and are intended for use by both physicians and driver licensing authorities.

Although no jurisdiction in Canada is legally required to adopt the CCMTA standards, the majority have been adopted by the driver licensing authorities. This achieves a uniformity of standards across Canada which supports both road safety and inter-provincial harmonization.

All medical standards, and subsequent changes, contained in Part 2 of this document are approved by all the jurisdictions through a balloting process that requires a two thirds majority for approval.

2.4 The relationship between Canadian jurisdictions’ driver fitness standards for commercial drivers, the CCMTA standards and the North American Free Trade Agreement

Under the North American Free Trade Agreement (NAFTA), on March 30, 1999, the United States and Canada agreed that the medical provisions for drivers of commercial motor vehicles (CMVs) of U.S. Federal Motor Carrier Safety Regulations (FMCSRs) and the Canadian National Safety Code (NSC) are equivalent (see Appendix 2).

Three exceptions for Canadian drivers were specified by the United States authorities in this reciprocity agreement: those who are (i) insulin-treated diabetics, (ii) hearing impaired at a defined level, or (iii) have a history of epilepsy are not permitted to operate CMVs in the United States although such individuals are allowed to drive commercial vehicles in Canada.

Also, drivers from either country operating under a medical waiver or who are operating under medical grandfather rights are prohibited from operating in the other country.

Because the reciprocity agreement between the United States and Canada identifies the CCMTA standards as the standard for commercial drivers, this means that regardless of individual provincial or territorial standards, drivers of CMVs must conform to the CCMTA standards if they wish to drive a CMV in the United States.
Commencing in January 2012, both countries agreed to adopt a unique identifier code to be displayed on the licence and the driving record to identify a commercial driver who is not qualified to operate a CMV in the other country.

In Canada, the identifier code is “W”, and defined as: “restricted commercial class – Canada only”. In the United States, the identifier code “V” will indicate the U.S. driver is only allowed to drive in the U.S. and is not medically qualified to drive in Canada.

On September 24, 2019, both Canada and the United States agreed to remove the Code W identifier for Canadian insulin-dependent diabetic drivers who are well controlled. These commercial motor vehicle drivers can now drive in Canada and the United States.
Chapter 3: Roles and responsibilities in driver fitness

All Canadian jurisdictions work in partnership with physicians, health care professionals and other agencies to implement and administer driver fitness programs. The following paragraphs illustrate the roles and responsibilities of key participants in assessing and determining driver fitness.

3.1 Government driver-licensing authorities

On a day-to-day basis, government driver-licensing authorities make the final driver fitness decision as to whether a driver is fit to drive.

3.2 Health professionals

Health professionals play a key role in identifying and assessing drivers who may be unfit to drive. In some jurisdictions they have a legal duty (mandatory reporting) to report certain medical conditions. Even in jurisdictions without mandatory reporting by physicians, ethical guidelines may describe situations in which the physician is required to submit a report to the driver-licensing authority.

Health professionals also conduct assessments and provide information to the driver licensing authority regarding a driver’s health and extent of impairment. Sometimes health professionals are asked to comment directly on driving ability.

Medical specialists may be called upon to provide written or oral opinions when a driver asks for a review of the driver fitness decision.

3.3 Allied health professionals

Other allied health professionals such as occupational therapists, driver rehabilitation therapists and physiotherapists may be asked to conduct assessments of drivers and comment on the driver’s functional ability to drive. In some jurisdictions, driver licensing authorities may accept reports initiated by allied health professionals because of driver fitness concerns.

Chapter 4: A changing approach to determining driver fitness

Before 2012 the CCMTA medical standards were based on the diagnostic model. That is, the standards were based primarily on the medical condition and the presumed group characteristics of people with that condition rather than on how the medical condition affected the functions necessary for driving on an individual basis. In terms of an evidentiary basis, the standards reflected the consensus opinion of practising medical specialists.
Three developments have had a significant effect on the procedure for the administration of driver fitness programs and the medical condition guidelines:

1. A Supreme Court of Canada decision established the requirement to individually assess drivers. The ‘Grismer’ case held that each driver must be assessed according to the driver’s own personal abilities rather than presumed group characteristics.

2. Nationally and internationally, driver licensing authorities are adopting a functional approach to driver fitness. This means assessing the effect of a medical condition on the physical, cognitive and sensory functions necessary for driving.

3. CCMTA has increased its emphasis on using research evidence, where it exists, as the basis of its driver fitness standards. Each medical condition in Part 2 is included because the best available evidence shows that the medical condition causes impairment of one or more of the functions necessary for driving or has been associated with an elevated risk of crash or impaired driving performance.

The model for this work was drawn from British Columbia’s approach to medical conditions and fitness to drive which in turn was based on an integrated review by Dr. B. Dobbs who was contracted by British Columbia.

The guiding principles articulated on the following pages reflect the CCMTA’s changing approach to driver fitness and are the foundation of the new standards in Part 2.

Chapter 5: Guiding principles

The assessment of driver fitness is guided by four principles. By following these principles, Canadian driver licensing authorities will ensure that drivers are given the maximum licensing privilege possible taking into account their medical condition, its effect on the functions necessary for driving, and the driver’s ability to compensate for the condition. These principles are the foundation of the Administration of Driver Fitness Programs in Part 1 of this document.

5.1 Principle 1 - Risk management

Principle

Driver licensing authorities will administer their driver fitness programs using a risk management approach.

Discussion

Risk is often defined as the likelihood of an uncertain event occurring multiplied by the consequences if the event were to take place. This means that a highly likely event with serious consequences is a greater risk than an unlikely event with minor consequences. Risk

1 British Columbia (Superintendent of Motor Vehicles) v. British Columbia (Council of Human Rights), [1999] 3 S.C.R. 868
management is the process of identifying risks and taking action to minimize either the likelihood or the consequences of an event.

Unfortunately, there is no reliable method of calculating risk as it relates to fitness to drive. The effects of a medical condition may be specific to an individual and the ability to compensate for the medical condition may also vary by individual. As well, because the driving environment is complex and continuously changing, it is difficult to determine exactly what level of impairment means a person is not fit to drive. Because of these limitations, driver licensing authorities cannot precisely calculate the risk presented by a driver with a particular medical condition. Despite the fact that this risk cannot be precisely calculated, driver licensing authorities can still use a risk management approach when conducting activities associated with their driver fitness programs. In Grismer, the Supreme Court of Canada indicated that people with some level of functional impairment may have a driver’s licence because society can tolerate a degree of risk in order to permit a wide range of people to drive.

5.2 Principle 2 - Functional approach

Principle

Driver fitness determinations will no longer be based solely on diagnosis but primarily on functional ability to drive.

Discussion

Although there are some exceptions to this general principle, a functional approach to determining driver fitness means that when making driver fitness determinations, the focus is on the effect that a medical condition has on the functions necessary for driving rather than making a decision based solely on the diagnosis. This is because many medical conditions may result in a wide range of impairment – from mild to severe – and drivers may vary in their own ability to compensate for the impairment.

5.3 Principle 3 - Individual assessment

Principle

Driver fitness determinations will be based on the individual driver’s characteristics and abilities rather than the presumed group characteristics and abilities of people with that medical condition.

Discussion

The Grismer decision held that each driver must be assessed according to the driver’s own personal abilities rather than presumed group characteristics.
However, the driver fitness standards outlined in Part 2 are based on presumed group characteristics of individuals with a given medical condition. However, consistent with the decision in *Grismer*, driver licensing authorities must make driver fitness determinations on an individual basis. This means that the standards are the starting point for decision-making, but they may not apply to every individual. This takes into account that in some situations, individuals who would otherwise not be fit to drive have learned strategies, or utilize devices, to compensate for their functional impairment. For example:

- a driver with limited peripheral vision may use the strategy of turning their head (scanning) to the left and right to ensure that they cover the full field of view, or
- a driver who is unable to use their lower limbs may have their vehicle modified for hand controls.

Conversely, an individual who on the face of the standard would be fit to drive may be found unfit. For example:

- a driver with a visual defect may lack insight into the effects that their medical condition has on their driving and therefore cannot compensate properly for this impairment. Because of their lack of insight, this driver would not be fit to drive.

5.4 Principle 4 – Reviewing and considering the best information available

Principle

Driver licensing authorities will review and consider the best information available when making driver fitness determinations.

Discussion

For each driver, driver licensing authorities will gather the available information they require in order to determine fitness. Depending upon the nature and the degree of the functional impairment, the information may include results of specialized functional assessments that clearly indicate whether or not an individual is fit to drive, such as a road test or an occupational therapist’s evaluation. For other impairments there may be no assessment tools available that can accurately measure the effects of a medical condition on the functions necessary for driving. For example, in the case of drivers with episodic impairments, driver licensing authorities have to rely on the results of medical assessments that incorporate statistical risk analysis and informed opinion about the risk of a reoccurrence as the best information available for determining fitness to drive.

Driver licensing authorities will generally rely on the medical standards to make driver fitness determinations. However, because each individual is unique, authorities must also review and consider other available and relevant information when making driver fitness determinations.
PART 1

A MODEL FOR ADMINISTRATION OF DRIVER FITNESS PROGRAMS
Chapter 1: Introduction

Individual territorial and provincial driver licensing authorities administer their driver fitness programs in a variety of ways. However, to support the consistent use of the medical standards, guidelines for the administration of driver fitness programs have been articulated by DFOG. These guidelines have been organized under five key activities:

1. identifying drivers who may not be fit to drive
2. assessing drivers: assessment tools
3. making a decision regarding driver fitness: risk analysis
4. deciding if a driver should be reassessed at a pre-determined interval, and
5. reconsidering a driver fitness decision upon a request by the driver.
Step 1 – Identifying drivers
Identifying drivers who may not be fit to drive

Step 2 – Assessment
Assessment tools
Medical assessments, e.g.
- driver’s medical examination
- tests, e.g. ultrasounds, x-ray

Step 2 – Assessment
Assessment tools
Medical assessments, e.g.
- driver’s medical examination
- tests, e.g. ultrasounds, x-ray

Step 3 – Making a driver fitness determination
Risk analysis

Step 4 – Setting a reassessment interval
Deciding if a driver should be reassessed at a pre-determined interval

Step 5 – Reconsidering the decision upon request
Reconsidering a driver fitness decision upon request by the driver
Chapter 2: Definitions

Assessment means using any kind of test or examination to gather information about a driver’s functional ability to drive. Assessments may be either functional or medical (see definitions of these terms) and lead to a driver fitness determination.

Authority See definition of ‘driver licensing authority’

Cognitive assessment means an assessment that has been specifically designed to assess impairment of the cognitive functions needed for driving. A cognitive assessment may include a battery of in-office tests or a functional driving evaluation.

Cognitive screen means the use of a test or tests that have been specifically designed to screen for impairment of the cognitive functions needed for driving. A cognitive screen is the first step in determining cognitive fitness to drive. Depending on the results of a cognitive screen, a complete cognitive evaluation may be required.

Commercial driver means a driver with a commercial class licence (Class 1-4) as determined by the licensing authority, or a driver deemed to be a commercial driver as determined by the licensing authority.

Condition means that a restriction on an individual or an individual’s licence has been imposed by the driver licensing authority. The terms ‘condition’ and ‘restriction’ are used interchangeably in many Canadian jurisdictions. For the purposes of these guidelines, a licensing ‘condition’ includes the concept of ‘restriction’.

All driver licensing authorities use conditions on a driver licence as part of their driver fitness program. These are generally enforceable at roadside:

example: ‘wear corrective lenses’

Some driver licensing authorities also place conditions on the individual driver. These are not enforceable at roadside:

example: ‘you must not drive if your dialysis treatment is delayed or circumstances do not allow you to maintain your dialysis schedule’

Credible report means a report that provides objective information about a driver’s driving ability, e.g. information about observed driving infractions (running a stop sign) or poor driving (failure to notice
pedestrians; not staying in lane). A credible report may also be a report of damage to a driver’s car that a driver cannot explain. Credible reports may come from any source including health care professionals, the police, front-line licensing staff, family members or other concerned members of the public.

Driver means any person with any class of a valid, suspended or cancelled driver licence or a person applying for any class of driver’s licence

Driver licensing authority means the body within each province or territory that makes driver fitness determinations.

Driving record includes:

- the length of time an individual has been licensed
- driving offences
- driving sanctions applied
- current and past licence conditions
- motor vehicle related Canadian Criminal Code convictions
- crash history, and
- past road test results.

Functional assessment is any kind of assessment that involves direct observation or measurement of the functions necessary for driving. Functional assessments may include but are not limited to:

- paper-pencil cognitive screen
- computer-based cognitive assessments
- road tests
- occupational therapist assessment
- driver rehabilitation assessment
- vision tests and examinations, and
- hearing tests

Medical assessment is any kind of assessment that provides information regarding an individual’s health and/or their response to, or compliance with, treatment. Medical assessments include:

- driver fitness assessments completed by health care professionals including specialists
- diagnostic imaging
- diagnostic tests, and
- Medical specialists are physicians who have completed advanced education and clinical training in a specific area of
medical specialty area. Examples of medical specialists include neurologists, psychiatrists, internal medicine

Medical condition is any injury, illness, disease or disorder. Impairment resulting from medications and/or treatment regimes that have been prescribed are considered an integral component of medical conditions. General debility and a lack of stamina are also considered as medical conditions that may impair the functions necessary for driving.

Non-commercial driver means a driver with a non-commercial class licence (class 5 and/or 6 or 7) as determined by the driver licensing authority.

Incidence means the annual number of new cases of a medical condition. (i.e. There were 1000 cases in 2016.)

Prevalence means the global occurrence of a medical condition. (i.e. 9% of the male population over 60 have sleep apnea.)

Reassessment is the process of making a new fitness determination for a driver with a previously assessed medical condition. Reassessment is at the discretion of the driver licensing authorities at the expiration of a scheduled reassessment interval or at any time in response to a credible report indicating that a driver may not be fit to drive.

Restriction See definition of ‘Condition’

Road Test is a practical evaluation of driving fitness conducted on public roads. (Does not include driving simulator or closed-circuit evaluations.) Different road tests may be tailored to evaluate specific groups:

1. **Novice driver road tests:** These tests are designed for novice drivers who wish to obtain a driver’s licence for the first time. Their objective is to determine if the novice driver has mastered driving techniques and the rules of the road.

2. **Competency road tests for experienced drivers:** These tests are designed for experienced drivers whose fitness to drive has been put in doubt because of a functional impairment that may be physical, sensorial or cognitive. The tests are administered by occupational therapists, driving instructors or licensing authority evaluators to ascertain if the driver’s impairment renders their driving unacceptable for safety reasons.
Chapter 3: Key concepts

The following are explanations of the key concepts underlying these guidelines. An understanding of these concepts is necessary in order to use the guidelines effectively.

3.1 Functional ability and driving outcomes

Cognitive

Individuals with progressive or irreversible declines in cognitive function cannot compensate for an impairment.

Motor

Research on motor functions and driving indicates considerable variability in the association between the different motor functions and driving outcomes. Overall, the research suggests that a significant level of impairment in motor functions is needed before driving performance becomes unsafe.

Sensory – vision

Results from studies investigating the relationship between visual abilities and driving performance are, for the most part, equivocal. It may be, as suggested for motor abilities, that a significant level of visual impairment is needed before driving performance is affected.

Sensory – hearing

Impaired hearing has not been demonstrated to influence driving. Most hearing-impaired drivers are conscious of their impairment and compensate by being more cautious and alert and by making more use of their mirrors than drivers with normal hearing.

However, the ability to hear or communicate is of paramount importance for the operation of certain commercial vehicles including a passenger bus, ambulance and other emergency vehicles or vehicles transporting dangerous material.

3.2 Types of impairments

The types of impairments described below are described as if they existed in isolation from each other. In practice, however, a person may have more than one type of impairment and, under some circumstances, an impairment that was initially identified as transient, may become persistent. As well, some conditions, in particularly, mental illness, can be both persistent and episodic. Finally, episodic impairments, for example epilepsy, may result in sudden incapacitation when an event occurs.
Transient impairment

Transient impairments are a temporary compromise of the functional ability to drive where there is little or no likelihood of a recurring episodic or ongoing persistent impairment. Examples of transient impairments are:

- the after-effects of surgery, e.g. the time to recover from the anaesthetic and the surgery itself
- fractures and casts, post-orthopaedic surgery
- concussion
- conscious sedation (short-term)
- invasive medical tests
- injury
- use of orthopaedic braces (including neck), and
- infections.

Driver fitness programs do not need to know when a driver has experienced a transient impairment and do not assess drivers with transient impairments. In these cases, a doctor may rely on best practices to tell a patient, for example, “don’t drive for 6 weeks after your abdominal surgery.” The Canadian Medical Association (CMA) Guide for Physicians when Determining Fitness to Drive, 9th edition contains guidelines for physicians for many transient impairments associated with a range of medical conditions.

Persistent impairment

A persistent impairment is an ongoing or continuous impairment to a function necessary for driving. The potential effects of persistent impairments on the functions necessary for driving are generally measurable, testable and observable. Although the condition may be progressive, the progression is usually slow and sudden deterioration is unlikely. Persistent impairments may be stable, e.g. loss of a leg, or progressive, e.g. arthritis.

Episodic impairment

An episodic impairment is the result of a medical condition that does not have any ongoing measurable, testable or observable effects on the functional ability to drive but that may result in an unpredictable sudden or episodic impairment of the functions needed for driving. For example, the medical condition that gives rise to the impairment may be testable, e.g. the size of an abdominal aortic aneurysm, or known, e.g. epilepsy, but the precipitating event that negatively effects the functional ability to drive, e.g. the rupture of the aneurysm or an epileptic seizure, is not predictable.
Sudden incapacitation

Sudden incapacitation means the abrupt loss of the functions necessary for driving. It may be the result of a total or partial loss of consciousness, overwhelming pain, seizures, syncope, hypoglycemia or another episodic event.

3.3 Important considerations when determining fitness

Insight

For any driver insight, or self-awareness, is an important factor. Deciding not to drive because you are not feeling well is not only a sign of good judgement, it is also a sign that you are aware of the effects that your temporary condition causes for your driving.

In the context of a driver with a medical condition insight means that a driver:

• is aware of their medical condition
• understands how the condition may impair their functional ability to drive, and
• has the judgment and willingness to comply with their treatment regime and any conditions of licensing.

Physicians will often use terms such as “impaired awareness,” or “lack of awareness regarding deficits” on a medical assessment to indicate that an individual lacks insight.

An individual’s level of insight is a critical consideration when assessing the risk of an episodic impairment of functional ability due to a psychiatric disorder. Because of this, there is a specific guideline regarding insight in the Psychiatric Disorders standard.

Compensation

Persisting impairments

Compensation is the use of strategies or devices by a driver to attenuate the functional effects of an impairment caused by a medical condition. Treatment for a condition with medications is not a type of compensation. Possible compensation strategies for many medical conditions are included in Part 2 of this document.

Whether an individual can compensate for a persistent impairment depends upon the function that is impaired. Individuals with impairments in motor function, vision or hearing may be able to compensate for those impairments. Individuals with progressive or irreversible declines in cognitive function are incapable of compensating for an impairment whether it is cognitive, physical or sensorial.

Episodic impairments

An individual cannot compensate for an episodic impairment except by avoiding known precipitating factors.
3.4 Functions needed for driving

The functions necessary for driving can be categorized as either cognitive, motor or sensory (vision and hearing). Sensorimotor functions are a combination of sensory and motor functioning and are considered as a subset of motor functions. Sensorimotor functions are, for the most part, reflexive or automatic, e.g. the response to your hand being placed on a hot stove or the ability to sit upright.

Within each category, the functions that are most relevant to the driving task are described in the tables below. Although the functions necessary for driving are described individually, driving is a complex perceptual-motor skill that usually takes place in a rapidly changing environment that requires the functions to operate together.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example in the driving context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divided attention</td>
<td>the ability to attend to two or more stimuli at the same time</td>
<td>responding to the roadway ahead while being able to identify stimuli in the periphery</td>
</tr>
<tr>
<td>Selective attention</td>
<td>the ability to attend to one or more important stimuli while ignoring competing distractions</td>
<td>isolating the traffic light from among other environmental stimuli</td>
</tr>
<tr>
<td>Sustained attention (vigilance)</td>
<td>the capacity to maintain an attentional activity over an extended period</td>
<td>attending to the roadway ahead for the entire duration of the trip</td>
</tr>
<tr>
<td>Short-term or passive memory</td>
<td>the temporary storage of information, or the brief retention of information</td>
<td>remembering roadway sign information such as that related to freeway exits or construction areas; signs related to caution ahead, etc.</td>
</tr>
<tr>
<td>Working memory (the active component of short-term memory)</td>
<td>the ability to manipulate information with time constraints/taking in and updating information</td>
<td>processing environmental information related to the driving task on a busy freeway</td>
</tr>
</tbody>
</table>
| Long-term memory | memory for personal events (autobiographical memory) and general world knowledge (semantic memory) | knowing:
- your way from home to the grocery store
- the meaning of traffic signs, and
- the rules of the road
- where you lived as a child |
Cognitive functions needed for driving

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example in the driving context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice/complex reaction time</td>
<td>the time taken to respond differentially to two or more stimuli or events</td>
<td>responding when a cat darts onto the edge of the road at the same time a pedestrian steps onto the roadway</td>
</tr>
<tr>
<td>Tracking</td>
<td>the ability to visually follow a stimulus that is moving or sequentially appearing in different locations</td>
<td>visually following other cars on the road or a pedestrian crossing the road</td>
</tr>
<tr>
<td>Visuospatial abilities</td>
<td>processes dependent on vision such as the recognition of objects, the ability to mentally rotate objects and determinations of relationships between stimuli based on size or color</td>
<td>understanding where a tree and other objects are in relation to the car Parking a car in a crowded parking lot.</td>
</tr>
<tr>
<td>Executive functioning (see also central executive functioning below)</td>
<td>those capabilities that enable an individual to successfully engage in independent, purposeful, and self-serving behaviours. Disturbances in executive functioning are characterized by disturbed attention, increased distractibility, deficits in self-awareness, and preservative behaviour.</td>
<td>Deciding when to make an unprotected left-hand turn in traffic</td>
</tr>
<tr>
<td>Central executive functioning (see also executive functioning above)</td>
<td>that part of working memory that is responsible for ‘supervising’ many cognitive processes including encoding (inputting information from the external world), storing information in memory, and retrieving information from memory. Central executive (CE) functioning includes abilities such as planning and organization, reasoning and problem solving, conceptual thought, and decision making. CE functioning is critical for the successful completion of tasks that involve planning or decision making and that are complex in nature</td>
<td>making a left turn at an uncontrolled intersection.</td>
</tr>
</tbody>
</table>
Cognitive functions needed for driving

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example in the driving context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual information processing</td>
<td>the processing of visual information beyond the perceptual level (e.g. recognizing and identifying objects and decision making related to those objects). Visual information processing involves higher order cognitive processing. However, because of the visual component, references to visual information processing often are included within the visual domain.</td>
<td>Recognizing if an object in the road ahead is a paper bag or a child.</td>
</tr>
</tbody>
</table>
Motor functions needed for driving (including sensorimotor)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example in the driving context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordination</td>
<td>the ability to execute smooth, accurate, controlled movements</td>
<td>executing a left turn; shifting gears, etc.</td>
</tr>
<tr>
<td>Dexterity</td>
<td>readiness and grace in physical activity; especially skill and ease in using the hands</td>
<td>inserting keys into the ignition; operating vehicle controls, etc.</td>
</tr>
<tr>
<td>Gross motor abilities</td>
<td>gross range of motion and strength of the upper and lower extremities, grip strength, proprioception, and fine and gross motor coordination</td>
<td>being able to depress the brake or the accelerator, sudden turning of the steering wheel in an emergency</td>
</tr>
<tr>
<td>Range of motion</td>
<td>the degree of movement a joint has when it is extended, flexed, and rotated through all of its possible movements</td>
<td>Range of motion of the extremities (e.g. ankle extension and flexion) is needed to reach the gas pedal and brake and upper body range of motion (e.g. shoulder and elbow flexion) is necessary for turning the steering wheel. Range of motion of the head and neck is necessary for looking at the side and rear for vehicles and for identifying obstacles at the side of the road or cars approaching from a side street.</td>
</tr>
<tr>
<td>Strength</td>
<td>the amount of strength a muscle can produce</td>
<td>depressing the brake pedal</td>
</tr>
<tr>
<td>Flexibility</td>
<td>the ability to move joints and muscles through their full range of motion. Muscle strength and flexibility often go hand in hand.</td>
<td>getting in and out of the car, operating vehicle controls, fastening the seat belt, reversing</td>
</tr>
<tr>
<td>Reaction time</td>
<td>the amount of time taken to respond to a stimulus</td>
<td>depressing the brake pedal in response to a child running out on the roadway, swerving to avoid an animal on the road</td>
</tr>
</tbody>
</table>
Sensory functions needed for driving – Vision

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example in the driving context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuity</td>
<td>acuteness of vision or perception i.e. the capacity to see small objects at a distance</td>
<td>reading directional signs</td>
</tr>
<tr>
<td>Visual field</td>
<td>an individual’s entire spatial area of vision when fixation is stable, i.e. the extent of the area that an individual can see with their eyes held in a fixated position</td>
<td>seeing cars approaching from the left or right</td>
</tr>
<tr>
<td>Contrast sensitivity</td>
<td>the ability to perceive differences between an object and its background, e.g. the ability to detect a gray object on a white background or to see a white object on a light gray background</td>
<td>seeing traffic lights or cars at night</td>
</tr>
<tr>
<td>Glare recovery</td>
<td>the process in which the eyes recover visual sensitivity following exposure to a source of glare</td>
<td>adapting to the reflection of the sun from a car dashboard or oncoming headlights when driving at night</td>
</tr>
<tr>
<td>Perception</td>
<td>the process of acquiring, interpreting, selecting, and organizing sensory information</td>
<td></td>
</tr>
</tbody>
</table>

Sensory functions needed for driving – Hearing

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example in the driving context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing</td>
<td>Ability to perceive sound</td>
<td>The ability to communicate is of paramount importance for the operation of certain commercial vehicles that transport dangerous cargoes as well as emergency vehicles and those transporting passengers.</td>
</tr>
</tbody>
</table>
Chapter 4: Identifying drivers who may not be fit to drive

4.1 Overview

Identifying drivers who may not be fit to drive and who therefore pose a risk to public safety is a key function of driver licensing authorities.

The driver fitness medical standards in Part 2 of this document support authorities by identifying the most common medical conditions that are of concern. This model does not include transient impairments because there is little or no likelihood of a recurring episodic or ongoing persistent, impairment. In addition, by the time that the driver-licensing agency learns of a transient impairment it may have resolved.
Step 1 – Identifying drivers
Identifying drivers who may not be fit to drive

Episodic impairment

Persistent impairment

Step 2 – Assessment
Assessment tools
1. Medical assessments, e.g.
 • driver’s medical examination
 • diagnostic tests

2. Functional assessments, e.g.
 • cognitive screen
 • road test
 • occupational therapist assessment
 • driver rehabilitation assessment
 • eye tests and examinations
 • hearing tests

Step 3 – Making a driver fitness determination
Risk analysis

Step 4 – Setting a reassessment interval
Deciding if a driver should be reassessed at a pre-determined interval
4.2 All drivers

Model Standard

Provincial and territorial driver licensing authorities use screening mechanisms to identify individuals whose functional ability to drive may be impaired by a medical condition. This section will use examples to demonstrate the differences between standards for commercial and non-commercial drivers as well as the supporting information that accompanies the standards in Part 2 of this document.

Rationale for a screening standard

All Canadian jurisdictions have the legal authority to examine a driver’s fitness and ability to drive. Authorities are specifically concerned with individuals whose fitness and ability to drive may be impaired by medical conditions. This includes individuals who may be impaired by medications or treatment regimes prescribed as treatment for a medical condition, general debility or a lack of stamina.

4.3 Non-commercial drivers (Class 5, 6, 7)

Model Screening Standard

Drivers with Class^2^ 5, 6 or 7 licences will be screened for medical conditions that may affect driving as follows:

(a) at age 75
(b) at age 80
(c) every 2 years over age 80
(d) or more frequently at discretion of the driver licensing authority.

Rationale

The functional effects associated with aging are well documented. For most healthy, aging drivers these effects are unlikely to lead to unsafe driving in the short term. However, aging is also associated with increased risk for a broad range of medical conditions, such as visual impairments, musculoskeletal disorders, cardiovascular disease, diabetes, and cognitive impairment and dementia. These medical conditions and the medications used to treat them may affect fitness to drive.

There is a particularly strong association between cognitive impairment and dementia and impaired driving performance. A large, national population-based study done in Canada in 1991

^2^ For definitions, see NSC 4 – Driver Licensing Classification System
showed that 25% of the population 65 and older have some form of cognitive impairment or dementia, rising to 70% for those 85 and older.

Because of the association between age and many chronic medical conditions, aging drivers are more likely to have one or more of these conditions. A 2013 study of Quebec drivers demonstrated that 67% of drivers aged between 70 and 79 had at least one of the principal medical conditions recognised to effect driving. This study also found that the average number of multiple chronic conditions increases with age.

With an increased rate of multiple medical conditions, there is also a greater likelihood that aging drivers will be taking multiple medications. With each additional medication taken there is an increased risk of side effects and adverse interactions between medications which may affect fitness to drive. While in many cases the adverse effects may be temporary or avoidable, there may be a persistent impairment of the functions needed for driving.

As a group, older drivers are less likely to be involved in a crash than other age groups. However, older drivers are at increased risk for at-fault crash or of being seriously injured or dying in a crash.

Statistics from British Columbia show that at about age 70, the ratio of at-fault crashes begins to rise, climbing to 2.5 for drivers who are 81 and older.

An examination of driver fatality rates, adjusted for driving exposure or total distances travelled on an annual basis, indicates that there are two high risk age groups: ages 16 to 19 and 65 and older. Older drivers are also more likely to be injured in a crash and to incur more severe injuries than younger drivers.

Unlike younger driver crashes, most traffic fatalities involving older drivers occur during the daytime, on weekdays, and in safe road conditions, with most the crashes involving another vehicle.
4.4 Commercial drivers

Model Screening Standard

4.4.1 Drivers with Class 1 – 4 licences will be screened for medical conditions that may affect driving as follows:

(a) up to age 45, every 5 years
(b) from age 45 to age 65, every 3 years, and
(c) from age 65, annually
(d) or more frequently at discretion of the driver licensing authority.

Rationale

The rationale under ‘non-commercial drivers’, in Section 4.3.1 also applies to commercial drivers. In addition, commercial drivers drive a variety of vehicles including large trucks, passenger carrying vehicles such as buses and emergency vehicles. Commercial drivers also spend many more hours at the wheel, often under far more adverse driving conditions, than do the drivers of non-commercial vehicles. They are usually unable to select their hours of work and cannot readily abandon their passengers or cargo should they become unwell when on duty. Drivers operating emergency vehicles are frequently required to drive while under considerable stress by the nature of their work, and often in inclement weather where driving conditions are less than ideal. Should a crash occur, the consequences are much more likely to be serious, particularly where the driver is carrying passengers or dangerous cargo such as propane, chlorine gas, toxic chemicals or radioactive substances.

Because of this greater time spent at the wheel, commercial drivers are routinely screened at regular intervals, even if there is no evidence that the driver has a known or possible medical condition.
4.5 Cancelling or restricting a licence because of an immediate public safety risk

Model Standard

4.5.1 If information obtained at any time reveals an immediate risk to public safety, authorities may direct that a licence be cancelled or restricted without further assessment.

4.5.2 If an authority has cancelled or restricted a licence because of an immediate public safety risk, the program may review the decision once further information is received.

Rationale

In most cases, authorities will not direct that a licence be restricted or cancelled based only on preliminary information. However, there are times when cancellation or restriction may be warranted prior to further assessment. For example, a credible report may indicate that an individual’s functional ability to drive is severely impaired. The authority would cancel the driver’s licence for public safety reasons and could review the decision once further information was received.
Chapter 5: Assessing fitness to drive

5.1 Overview
Assessing fitness to drive means using any kind of test or examination to gather information about a driver’s functional ability to drive. Driver licensing authorities have a variety of tools at their disposal to assess the effects of medical conditions on the functions necessary for driving. These can be categorized as either medical or functional assessments. The appropriate type of assessment depends both upon the function that is impaired and the nature of the impairment.
Model for the Administration of Driver Fitness Programs

Step 1 – Identifying drivers
Identifying drivers who may not be fit to drive

Episodic impairment
Persistent impairment

Step 2 – Assessment
Assessment tools
2. Medical assessments, e.g.
 • driver’s medical examination
 • diagnostic tests

Step 2 – Assessment
Assessment tools
3. Medical assessments, e.g.
 • driver’s medical examination
 • diagnostic tests
4. Functional assessments, e.g.
 • cognitive screen
 • road test
 • occupational therapist assessment
 • driver rehabilitation assessment
 • eye tests and examinations
 • hearing tests

Step 3 – Making a driver fitness determination
Risk analysis

Step 4 – Setting a reassessment interval
Deciding if a driver should be reassessed at a pre-determined interval
5.2 Requesting functional assessments

Model

5.2.1 If an authority decides further information on a driver’s functional ability to drive is necessary in order to make a driver fitness determination, the authority may request a functional assessment.

5.2.2 An authority may request a functional assessment of an individual with a persistent impairment; a functional assessment is not appropriate for a driver who has only episodic impairments.

Rationale

Consistent with the functional approach to driving fitness, a driver licensing authority may request an assessment of an individual’s functional ability to drive whenever that information is necessary in order to make a driving fitness determination.

Persistent and episodic impairments

Whether or not a functional assessment is appropriate depends upon the type of impairment. Because persistent impairments are measurable, testable and observable, it is possible to assess an individual’s functional ability to drive through observation by a physician or other health care practitioner or an OT or driver rehabilitation specialist. Because episodic impairments are not measurable or testable, there is no way to functionally assess how the impairment affects an individual’s ability to drive.

5.3 Requesting medical assessments

Model

5.3.1 If an authority decides that further information on a driver’s medical condition(s) or the driver’s response to, or compliance with, treatment is required, the authority will request a medical assessment.

Rationale

Since medical conditions may not remain stable, driver licensing authorities must ensure that the medical information that will serve to establish a driver’s fitness to drive is current and reflects faithfully driver’s health and compliance with treatment at the time the decision on licence status is made.
5.4 Assessing the cognitive functions needed for driving

Model

5.4.1 Generally, further information on an individual’s cognitive function will be required when a credible report indicates that:

 (a) there may be some loss of cognitive function
 (b) there is some loss of cognitive function and it is unknown whether the individual possesses sufficient cognitive function to drive, or
 (c) the driver has a medical condition at a stage usually associated with a loss of cognitive function, or that a previously known impairment has become more pronounced.

5.4.2 Authorities may use the results of cognitive screens or cognitive assessments to screen for, or assess, impairment of the cognitive functions needed for driving.

5.4.3 When the result of a cognitive screen is indeterminate, authorities may request a cognitive assessment of a driver.

5.4.4 Authorities may use the best available methods to assess possible cognitive impairment of the functions needed for driving.

5.4.5 Notwithstanding standards 5.4.2 to 5.4.4, an authority may request an occupational therapist or driver rehabilitation specialist assessment, or a gerontologist assessment, or a road test for a driver with a persistent cognitive impairment who may not be fit to drive.

Rationale

Cognitive screens

Historically, there has been a lack of reliable screening tools for the identification of individuals whose cognitive impairment or dementia poses a risk for adverse driving outcomes. Scores on mental status tests such as the Mini Mental Status Exam (MMSE) or the Montreal Cognitive Assessment (MoCA) are sometimes used for making decisions about driving competency. However, there is now a significant amount of evidence indicating that, while the MMSE and similar tests are useful as tools for identifying cognitive decline, they are not good predictors of an individual’s driving competence, particularly for those whose cognitive impairment is less severe. In addition, the scores of these tools are very sensitive to language ability and education. The Determining Medical Fitness to Operate Motor Vehicles, CMA Driver’s Guide 9th edition states that no cognitive tests or battery of tests alone have sufficient sensitivity or specificity to be used as a single determinant of driving ability. However, abnormalities on tests
including the MMSE, clock drawing and Trails B should trigger further in-depth testing of driving ability.\(^4\)

Standard neuropsychological or cognitive tests such as Trails A, Trails B, Digit Span, or the MoCA designed to assess cognitive functions (e.g. attention, memory, executive functioning) also are used to identify potentially compromised drivers. However, although these standardized tests sometimes correlate with measures of driving performance (e.g. on-road performance, crash rates), the absence of a strong and consistent relationship, as well as the lack of established cut points for categorizing drivers as ‘safe’ and ‘unsafe’, preclude using these tests as the sole determinant of driving competency at this time.

Recent research has focused on the development of useful, simple tools that will permit health care professionals to identify the potentially compromised driver. At this time these efforts are on-going.

Standard road tests

Standard road tests are conducted by provincial and territorial driver examiners who assess whether a novice driver has mastered the skills needed for driving to determine if a licence should be issued. Standard road tests are not designed to measure if the degree of impairment of the functions needed for driving and are not an appropriate tool for the evaluation of drivers who have developed functional impairment. To address this need, several jurisdictions have developed road tests for experienced drivers, often referred to as “competency road tests”,

5.5 Assessing motor function

Model

5.5.1 Generally, further information on a driver’s motor function will be required when a credible report indicates that there is some loss of motor function and:

- (a) it is unknown whether the individual possesses sufficient movement and strength to perform the motor functions necessary for driving the types of motor vehicles permitted under the class of licence held or applied for

- (b) it is unknown whether pain associated with a medical condition, or the medications used to treat a medical condition, adversely affect the individual’s motor function, and/or

- (c) it is unknown whether the individual can safely operate the type of motor vehicles permitted under the class of licence held or applied for using the vehicle

\(^4\) P. 29
modifications and devices that may be required to compensate for their functional impairment.

5.5.2 Authorities may request a road test where the authority needs to confirm that the individual is able to use adaptive driving equipment or vehicle modifications.

5.5.3 Authorities may request an occupational therapist or driver rehabilitation specialist assessment if further information is required on an individual’s motor function and a road test alone will not be able to provide the required information.

Rationale
Research on motor functions and driving indicates considerable variability in the association between the different motor functions and driving outcomes. Overall, the research suggests that a significant level of impairment in motor functions is needed before driving performance is affected to an unsafe level.

Occupational therapist or driver rehabilitation specialist assessments
Occupational therapists and other specialists with expertise in driver rehabilitation are trained to perform both in-office and on-road assessments of an individual’s functional ability to drive. Driver rehabilitation specialists are trained to evaluate an individual's ability to compensate for motor deficits during simulated and on-road testing and determine requirements for adaptive driving equipment and vehicle modifications.

5.6 Assessing sensory function – vision

Model
5.6.1 Further information on a driver’s visual function will be required when a credible report indicates that there is some loss of visual function and:

(a) it is unknown whether the individual possesses sufficient vision necessary for driving the types of motor vehicles permitted under the class of licence held or applied for

(b) it is unknown whether pain associated with the condition, or the medications used to treat the condition, adversely affect the individual’s visual function, and/or

(c) it is unknown whether the individual can safely operate the type of motor vehicles permitted under the class of licence held or applied for using the vehicle modifications and devices that may be required to compensate for their functional impairment.

5.6.2 Authorities will request an occupational therapist or driver rehabilitation specialist assessment, which will generally include an on-road assessment if further information is required or whether a driver’s vision is such that they are fit to drive.
5.6.3 Authorities may require a functional evaluation for a visually impaired individual that will usually include an on-road assessment. Some jurisdictions have developed their own road tests for the visually impaired while others refer these clients to specialists or occupational therapists.

Rationale

Although there are tools that measure, for example, visual acuity and visual fields, the vision standards for driving are based on consensus opinion of subject matter experts. Research has not identified what level of vision impairment renders a person unable to drive safely.

The loss of certain visual functions can be compensated for adequately, particularly in the case of long-standing or congenital impairments. When a person becomes visually impaired, the capacity to drive safely varies with their ability to compensate. Thus, there are people with visual deficits who do not meet the vision standards for driving but who can drive safely. Because of this, further assessment may be required for drivers who do not meet the stated vision standards.

5.7 Assessing sensory function – hearing

Model

5.7.1 Further information on a driver’s hearing function can be obtained when a report indicates that there is some loss of function and the driver’s licence includes classes that are affected by the hearing standard.

Rationale

There are several tools that measure hearing performance, for example audiometric tests and the forced whisper test. However, research has shown that loss of hearing does not affect crash risk.

The focus of the hearing standards is the ability to hear or communicate since this capacity is of paramount importance if a vehicle transporting dangerous goods is involved in a crash or a situation that could endanger the public requiring the driver to interact verbally with the authorities, police or the public in an emergency.

5.8 Assessing drivers with multiple functional impairments

Standard

5.8.1 If an authority decides that more than one of the functions necessary for driving needs to be assessed, the authority will request functional assessments in the following order:

(a) assessments of cognitive function

(b) assessments of sensory function, and
(c) assessments of motor function.

5.8.2 If the results of an assessment indicate that an individual’s cognitive, motor or sensory function is impaired to the extent that the individual is not fit to drive, the authority may make a driver fitness determination without requesting further assessments of the other functions necessary for driving. Whenever possible, the cumulative effects of multiple functional impairments should be evaluated rather than evaluating each impairment separately.

Rationale

Some drivers may have impairments of more than one of the functions necessary for driving. In this situation, the authority prioritizes requests for functional assessments based on the functions that may be impaired. Because a driver cannot compensate for cognitive impairment, if an individual’s cognitive function may be impaired that function will be assessed first. Sensory functions are assessed next, followed by motor functions. If an assessment indicates that a function is impaired, and a driver is not fit to drive there is no need to continue with further assessments of the other functions that may be impaired.

5.9 Assessing drivers with multiple medical conditions

Model

5.9.1 If a driver has multiple medical conditions that result in a cumulative or combined effect on the functions necessary for driving such that the medical conditions cannot be considered individually or independently, the authority may request functional assessments (where applicable) of each function that may be impaired, even if the medical condition standards for each identified medical condition indicate that the individual is fit to drive.

5.9.2 Authorities should request functional assessments of individuals with multiple medical conditions that cannot be considered independently, unless the driver fitness standards for any of the identified medical conditions clearly indicate that the individual is not eligible for a licence.

Rationale

The functional effects of multiple medical conditions on driver fitness is very important. Research results indicate that drivers with multiple medical conditions are, in general, at higher risk for at-fault crashes than those with a single medical condition.

The standards in Part 2 each focus on a single medical condition, e.g. cardiovascular disease, and the standards are written as if an individual only had one medical condition. This is because the number of combinations of illnesses and medications is simply too large and varied to make possible the development of comprehensive standards that cover every single eventuality.
This means that applying individual standards to the driver with multiple conditions may not permit the authority to adequately evaluate the driver’s fitness to drive. While the standards for each individual medical condition may indicate that the individual is eligible for a licence, if the medical conditions have a cumulative effect on the functional ability to drive, the individual may not be eligible.

5.10 **Time period during which assessments are valid**

Model

5.10.1 Generally, an authority will accept the results of any assessment conducted within the previous one-year period, even if completed for another purpose, if it provides the required information. Longer periods may be accepted by the authority depending upon the type of assessment and the stability of the driver’s condition.

Rationale

Assessments may be costly and time-consuming for drivers, authorities and health care providers. If an assessment has already been conducted that provides the information required for a driver fitness determination, there is no need for an individual to be re-assessed, so long as the results of the assessment are still reliable. Because many conditions are progressive, and an individual’s abilities may change over time, assessment results generally only continue to be reliable for a limited period after completion of the assessment.

5.11 **Time limits for drivers to complete assessments**

Model

5.11.1 Whenever a driver licensing authority requests an assessment, it will inform the individual of the time period within which the assessment must be completed.

5.11.2 Upon request, a driver licensing authority may extend the period for an individual to comply with a request for an assessment. In considering whether to extend the time period, the authority will consider information from the driver regarding the circumstances that necessitate an extension, such as

(a) work commitments

(b) the driver’s location,

(c) the driver’s degree of mobility,

(d) availability of assessors, and/or

(e) known delays for an appointment.
5.11.3 If a driver does not comply with a request for an assessment within the time period or extension:

(a) the authority will direct that the driver’s licence be cancelled, in the case of a driver who is already licensed, or

(b) will direct that a licence not be granted, in the case of an individual who has applied for a licence.

Rationale

Both for public safety and administrative fairness reasons, driver fitness determinations must be made as soon as possible after an individual is identified. A driver’s licence is a privilege. Where further information is required to make a determination, this means individuals must comply with requests for assessments in a timely fashion. If an individual does not comply with a request for an assessment, jurisdictions have the authority to direct the licence be suspended or cancelled.
Chapter 6: Making a driver fitness determination

6.1 Overview
When making a driver fitness determination, a driver licensing authority will review all the information it has received, will consider the degree of risk presented by a driver and will determine whether that individual should be licensed. In some cases, an individual can only be licensed if they comply with certain conditions that will reduce the level or risk of impairment. Driver licensing authorities may place conditions on an individual’s licence if they are necessary to ensure the safe operation of a motor vehicle.

The standards outlined in Part 2 are based, when possible, on the best available evidence regarding degree of risk and identify where the use of conditions may be appropriate to reduce risk; they guide decision-makers in determining the degree of risk presented by individual drivers.
Step 1 – Identifying drivers
Identifying drivers who may not be fit to drive

Episodic impairment

Persistent impairment

Step 2 – Assessment
Assessment tools
3. Medical assessments, e.g.
 • driver’s medical examination
 • diagnostic tests

Step 2 – Assessment
Assessment tools
5. Medical assessments, e.g.
 • driver’s medical examination
 • diagnostic tests
6. Functional assessments, e.g.
 • cognitive screen
 • road test
 • occupational therapist assessment
 • driver rehabilitation assessment
 • eye tests and examinations
 • hearing tests

Step 3 – Making a driver fitness determination
A risk analysis of all relevant sources of information that considers:
 1. whether the driver has a persistent or episodic impairment
 2. the function that is impaired – the results of any medical or functional assessments
 3. whether imposing conditions may be appropriate
 4. individual characteristics and abilities of each driver, e.g.:
 • commercial or non-commercial driver
 • whether the driver can compensate for any impairment
 • whether the driver is compliant with any existing treatment regime
 • whether the driver is compliant with any existing conditions
 • whether the driver has insight into the impact that their medical condition may have on driving
 • the driver’s driving record
 • other pertinent information

Step 4 – Setting a reassessment interval
Deciding if a driver should be reassessed at a pre-determined interval
6.2 **Sources of information to consider for making a driver fitness determination**

Model

6.2.1 Driver licensing authorities will make driver fitness determinations based on the medical standards and using a risk assessment analysis that considers:

- (a) whether the individual has a persistent or episodic impairment
- (b) the function that is impaired – the results of any medical or functional assessments
- (c) whether imposing conditions may be appropriate, and
- (d) the individual characteristics and abilities of each driver, for example:
 - whether the driver is a commercial or non-commercial driver
 - whether the driver can compensate for any impairment
 - whether the driver has insight into their medical condition and how it may affect their functional ability to drive
 - whether the driver is compliant with any prescribed treatment regime
 - whether the driver is compliant with any existing conditions,
 - the driver’s driving record, and
 - any other information relevant to driving privileges.

Rationale

Each driver is unique, and drivers may have multiple medical conditions or medical conditions which are not addressed in the driver fitness standards, authorities also review and consider other available and relevant information when making driver fitness determinations.

6.3 **Considering persistent impairments**

Model

6.3.1 An authority will make a driver fitness determination for an individual with a persistent impairment based on observable and measurable evidence of functional impairment.

6.3.2 In general, if a review of the information collected during assessment for an individual with a persistent impairment indicates no functional impairment, or a level of functional impairment that does not affect the individual’s ability to drive safely, the individual may be licensed.

Rationale

Because drivers with persistent impairments are continuously impaired, authorities can make determinations for drivers with persistent impairments based on observable and measurable evidence of functional impairment.
6.4 Considering episodic impairments

Model

6.4.1 A driver licensing authority will make a driver fitness determination for an individual with an episodic impairment based on the probability and consequences of an event of functional impairment occurring.

Rationale

Because drivers with episodic impairments are not continuously impaired, authorities cannot make determinations for individuals with episodic impairments based on observable and measurable evidence of functional impairment. Instead, they must rely on a risk analysis that considers the probability and consequence of impairment when making a driver fitness determination for an individual with an episodic impairment. To assist authorities in performing this analysis, the driver fitness standards for medical conditions that result in episodic impairments incorporate expert opinion regarding at what level of disease severity the medical condition may result in a functional impairment.

6.5 Considering imposing conditions

Model

6.5.1 If a driver licensing authority determines that an individual must:
 (a) stop driving in specific circumstances
 (b) take prescribed medications
 (c) comply with a specific treatment regime
 (d) report a change in their medical condition
 (e) attend medical follow-up
 (f) only operate vehicles during daylight hours
 (g) only operate certain types of vehicles
 (h) only operate vehicles in certain geographic areas
 (i) only operate vehicles under a certain speed
 (j) only carry certain types of cargo
 (k) wear specific devices, and/or
 (l) use specific vehicle modifications or adaptations

 to be licensed, the authority will impose those conditions on the individual or the individual’s licence.
6.5.2 Without information to the contrary, authorities will assume that a driver will comply with a condition. However, if the information obtained from assessments indicates that the driver is not likely to be compliant with any conditions that are required to be licensed, the individual may not be eligible for licensing.

Rationale

Generally, authorities will refer to the medical standards to determine the conditions that are required. However, because the driver fitness standards may not always apply in individual circumstances, authorities may impose conditions that are not contemplated by the standards.

If the risk associated with a medical condition of a certain severity level is high, and the risk cannot be reduced through the use of conditions, the standards indicate that an individual is not eligible for licensing.

6.6 Considering specific requirements for commercial drivers

Model

6.6.1 When determining whether an individual can be licensed as a commercial driver, a driver licensing authority will consider:

(a) the number of hours an individual with that type of licence typically spends driving
(b) any physical requirements (e.g. load securement) associated with the operation of motor vehicles allowed under that type of licence, and
(c) any information provided by the driver or the driver’s employer regarding:
 • the types of vehicles they will be operating, and
 • how many passengers they will carry and for what purpose.

6.6.2 If a driver is not fit to be licensed as a commercial driver, the authority will consider whether the driver is fit as a non-commercial driver.

Rationale

The class of licence held or applied for is a key consideration when making a driver fitness determination. Commercial drivers spend many more hours at the wheel than non-commercial drivers. Commercial drivers may also be called upon to undertake heavy physical work such as loading or unloading their vehicles, realigning shifted loads and putting on and removing chains. Because the physical and endurance requirements for commercial drivers are generally more onerous than for non-commercial drivers, the driver fitness standards often specify different standards for commercial and non-commercial drivers.
6.7 Considering whether the driver can compensate

Model

6.7.1 Driver licensing authorities will consider whether a driver can compensate for their functional impairment when making a driver fitness determination.

6.7.2 A driver cannot compensate for an episodic impairment.

6.7.3 Whether an individual can compensate for a persistent impairment depends upon the functional ability that is impaired. Individuals with impairments in motor function, vision or hearing may be able to compensate for those impairments unless there is a cognitive limitation. Individuals with progressive or irreversible declines in cognitive function cannot compensate for a cognitive impairment.

6.7.4 In general, an individual who can compensate for their functional impairment is fit to drive if their cognitive, sensory and motor functions are acceptable.

Rationale

In some situations, drivers who would otherwise not be fit to drive have learned strategies, or utilize devices, that reduce or eliminate their functional impairment. For example:

- a driver with limited peripheral vision may use the strategy of turning their neck to the left and right to ensure they have a full field of view, or
- a driver who is unable to use their lower limbs may have their vehicle modified for hand controls.

In keeping with the decision in Grismer, and CCMTA principles, driver licensing authorities must make driver fitness determinations on an individual basis that are based on the results of individual assessments. In general, if a review of assessment results and the individual’s driving record indicates that a driver can compensate for their functional impairment, the driver is fit to drive.

6.8 Considering insight

Model

6.8.1 If a driver licensing authority decides that conditions are required in order for an individual to be fit to drive, it will review:

(a) medical assessments on file that indicate that the driver has, or does not have, insight into their medical condition or its effects on the functions necessary for driving

(b) medical assessments on file that indicate that the driver is non-compliant with their prescribed treatment regime or medications
(c) the driver’s driving record indicates the individual has been non-compliant with conditions in the past, and
(d) any credible reports that indicate that the driver has been non-compliant with conditions in the past.

6.8.2 Without information to the contrary, an authority will assume that an individual has insight into their medical condition and its effects on their driving. However, if the information obtained indicates that the driver lacks insight, the individual may not be fit to drive.

Rationale

One key factor for determining whether a driver is fit to drive is the driver’s level of insight. This is because drivers with good insight are more likely to be diligent about their treatment regime, to seek medical attention when needed, and to avoid driving when their condition is likely to impair their functional ability to drive.

An individual’s level of insight is a critical consideration when assessing the risk of an episodic impairment of functional ability due to a psychiatric disorder. Because of this, there is a specific guideline regarding insight in the Psychiatric Disorders chapter.

6.9 Considering compliance with existing treatment regime

Model

6.9.1 If a driver is currently being treated for a medical condition, the authority will review any medical assessments or other information that indicates that the driver is non-compliant with their prescribed treatment regime or medications. If the information obtained indicates that the driver is not compliant with any existing treatment regime that is required to be fit to drive, the driver is not fit to drive.

6.9.2 Without information to the contrary, a driver licensing authority will assume that a driver is complying with their existing treatment regime.

Rationale

Individuals who are diligent about their treatment regime are more likely to have good insight into their medical condition, to seek medical attention when needed, and to avoid driving when their condition is likely to impair their functional ability to drive. In addition, compliance with the prescribed treatment may be essential for the maintenance of driver fitness.
6.10 Considering compliance with existing conditions of licence

Model

6.10.1 If a driver currently has licence conditions, the authority will review any information that indicates that the driver is non-compliant with the conditions. If the information obtained indicates that the driver is not compliant with any condition that is required to be fit to drive, the driver is not fit to drive.

6.10.2 Without information to the contrary, a driver licensing authority will assume that a driver is in compliance with their existing licence conditions.

Rationale

A key consideration when determining if a driver is fit to drive is compliance with current licence conditions. Because conditions are only imposed if required for driver fitness, if a driver is not in compliance with existing conditions they should not be licensed.

6.11 Considering the driving record

Model

6.11.1 Where driving records are available, authorities will review a driver’s driving record for any information that indicates whether the identified medical conditions impair the functions necessary for driving. Authorities will review:

(a) whether there has been a deterioration, improvement or no change in driving safety (i.e. crashes, penalty points and infractions) that can be linked to:
 - the date of onset
 - the date of diagnosis, and/or
 - the date the driver began a new treatment regime, prescribed medication or compensation strategy, and

(b) any evidence on file (e.g. police reports) that indicates that incidents were related to the individual’s medical conditions.

Rationale

An individual’s driving record may indicate that a medical condition is affecting their functional ability to drive. A lengthy, clean driving record for a driver with a long-standing medical condition may be evidence of:

- a low level of impairment
- an ability to compensate,
- a condition that is well controlled, or
- not driving actively.

A driving record with multiple crashes may indicate functional impairment.
Chapter 7: Reassessment

Reassessment is the process of making a new determination of fitness for a driver with a previously reported medical condition. Reassessment is initiated by driver licensing authorities at the expiration of a scheduled reassessment interval or at any other time in the discretion of the authority.

For some medical conditions, a reassessment interval is provided in the standards. In those circumstances where a reassessment interval is not provided, or where individual circumstances may require a different interval, e.g. when the individual has multiple medical conditions, the authority will review the relevant information to determine whether the driver’s level or risk of impairment may increase and the times period over which this increase may take place.

Where a reassessment interval is provided in the standards, it is a general guideline. However, if, in the opinion of the treating physician, other medical professional or the driver licensing authority, the driver should be reassessed at a different frequency, then an alternate reassessment interval can be set.

However, commercial drivers must be reassessed at a minimal frequency interval as indicated in Chapter 23.
Model for the Administration of Driver Fitness Programs

Step 1 – Identifying drivers
Identifying drivers who may not be fit to drive

- Episodic impairment
- Persistent impairment

Step 2 - Assessment
Assessment tools
4. Medical assessments, e.g.
 - driver’s medical examination
 - diagnostic tests

- Step 2 – Assessment
 Assessment tools
 7. Medical assessments, e.g.
 - driver’s medical examination
 - diagnostic tests
 8. Functional assessments, e.g.
 - cognitive screen
 - road test
 - occupational therapist assessment
 - driver rehabilitation assessment
 - eye tests and examinations
 - hearing tests

Step 3 – Making a driver fitness determination
Risk analysis

Step 4 – Setting a reassessment interval
Deciding if a driver should be reassessed at a pre-determined interval
7.1 **Routine reassessment intervals – commercial drivers**

Model

7.1.1 Unless a different reassessment interval is set because of a medical condition, authorities will routinely identify commercial drivers for a review of driver fitness at the time of licence application and then at the following intervals:

(a) up to age 45, every 5 years
(b) from age 45 to age 65, every 3 years, and
(c) from age 65, annually.

Rationale

See Part 2, Chapter 4, section 4.2 ‘Commercial Drivers’.

7.2 **Routine reassessment intervals – non-commercial drivers**

Model

7.2.1 Unless a different reassessment interval is set because of a medical condition, authorities will routinely identify non-commercial drivers for a review of driver fitness, for example:

(a) at age 75
(b) at age 80, and
(c) every 2 years over age 80.

Rationale

See Part 1, Chapter 4, section 4.3 ‘Non-commercial drivers’

7.3 **Determining whether reassessment is required (other than routine)**

Routine reassessment intervals are a minimum standard for reassessment. There may be instances, however, when drivers should be reassessed more frequently.

Model

7.3.1 To determine whether reassessment is required, the authority will consider:

(a) the driver fitness standard(s) for the relevant medical condition(s)
(b) the date of onset, diagnosis and/or treatment of the medical condition, if known
(c) the severity of the medical condition

5 For definitions, see NSC 4 – Driver Licensing Classification System
(d) whether the condition is stable and, if so, the period of stability
(e) whether the condition is progressive and, if so, the rate of progression
(f) whether the condition is controlled
(g) where appropriate, the date of the next routine reassessment (i.e. age-related or commercial driver routine)
(h) whether the individual has been compliant with any prescribed treatment regime, conditions or restrictions
(i) the results of any functional assessments
(j) the individual’s driving record, and/or
(k) the recommendation of a physician.

7.3.2 Generally, reassessment will be required if:
(a) the driver has a medical condition that is progressive
(b) the driver fitness determination is based upon the effectiveness of a prescribed treatment regime and it is unknown whether the treatment regime is likely to continue to be effective
(c) the driver fitness determination is based upon the effectiveness of a prescribed treatment regime and it is unknown whether the individual is likely to comply with the treatment regime
(d) the medical condition results in episodic impairment, the driver fitness determination is based upon an individual having a period of stability without an episodic event, and it is unknown whether the medical condition is likely to continue to be stable
(e) the medical condition results in an episodic impairment, the driver fitness determination is based upon a pattern of episodes, e.g. nocturnal seizures or auras, and it is unknown whether the pattern of episodes is likely to continue
(f) it is recommended by a physician, and/or
(g) the driver fitness standard for that medical condition indicates that reassessment is required.

Rationale
A driver licensing authority schedules a reassessment when the authority decides an individual can be licensed but may require follow-up assessment in the future to ensure the driver’s level or risk of impairment has not increased.
7.4 Setting the reassessment interval

Model

7.4.1 If an authority determines that an individual can be licensed, the authority will also decide whether reassessment is required and, if so, what the reassessment interval should be.

7.4.2 A driver licensing authority will not schedule a reassessment for a commercial driver if the driver’s next scheduled routine re-assessment will provide the authority with the necessary opportunity for reassessment.

7.4.3 A driver licensing authority can set any reassessment interval that is appropriate for a particular driver. A driver licensing authority will schedule a reassessment in 1 year if:

(a) a driver’s cognitive function is impaired, and the level of cognitive impairment is likely to increase over time

(b) the driver fitness determination is based upon the effectiveness of a prescribed treatment regime and it is unknown whether the treatment regime is likely to continue to be effective

(c) the driver fitness determination is based upon the effectiveness of a prescribed treatment regime and it is unknown whether the individual is likely to comply with the treatment regime

(d) the medical condition results in episodic impairment, the driver fitness determination is based upon an individual having a period of stability without an episodic event, and it is unknown whether the medical condition is likely to continue to be stable

(e) the medical condition results in an episodic impairment, the driver fitness determination is based upon a pattern of episodes, e.g. nocturnal seizures or auras, and it is unknown whether the pattern of episodes is likely to continue.

7.4.4 In most other circumstances where reassessment is required, an authority will schedule a reassessment interval depending upon the likely rate of progression of the medical condition(s).

Rationale

Reassessment intervals of less than 1 year are generally not scheduled, because most medical conditions do not substantially progress in such a short period of time. However, because of the rapid decline in cognitive function associated with many conditions, one year intervals, or less, are usually scheduled for individuals with cognitive impairments. One year intervals are also scheduled for individuals with episodic impairments where it is unknown if the stability of the condition, the pattern of episodes or the effectiveness of treatment is likely to change. This is because a period of one year is usually sufficient to determine whether such a change is likely to occur in the future.
PART 2:

CCMTA MEDICAL STANDARDS FOR DRIVERS
Summary of Chapters and Medical Conditions

<table>
<thead>
<tr>
<th>Chapter Number</th>
<th>Chapter Title</th>
<th>Conditions/Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Medical conditions at-a-glance</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cardiovascular disease and disorders</td>
<td>Cardiovascular diseases</td>
</tr>
<tr>
<td>4</td>
<td>Cerebrovascular disease</td>
<td>Cerebrovascular diseases</td>
</tr>
<tr>
<td>5</td>
<td>Chronic renal disease</td>
<td>Renal diseases</td>
</tr>
</tbody>
</table>
| 6 | Cognitive impairment including dementia | Cognitive impairment
Dementia |
| 7 | Diabetes - Hypoglycemia | Diabetes, Hypoglycemia |
| 8 | General debility and lack of stamina | Chronic fatigue syndrome, malabsorption syndromes, AIDS, malignancies, chronic pain |
| 9 | Hearing loss | |
| 10 | Intracranial tumours | Intracranial tumours |
| 11 | Musculoskeletal conditions | Musculoskeletal |
| 12 | Neurological disorders | MS, Cerebral Palsy, Parkinson’s |
| 13 | Peripheral vascular diseases | Abdominal Aortic Aneurysm
Aortic dissection
DVT – Pulmonary embolism
Peripheral arterial disease
- severe claudication |
| 14 | Psychiatric disorders | Mood disorders, ADHD, Schizophrenia, Personality disorders |
| 15 | Drugs and Driving | Opioids, Antidepressants, Antiepiletics, Antihistamines, Antipsychotics, Sedatives, Stimulants, Alcohol dependence |
| 16 | Respiratory diseases | Chronic obstructive pulmonary disease |
| 17 | Seizures and epilepsy | Seizures, epilepsy, alcohol induced seizures |
| 18 | Sleep disorders | Narcolepsy
Sleep Apnea (OSA) |
| 19 | Syncope | |
| 20 | Traumatic brain injury | Traumatic brain injuries |
| 21 | Vestibular disorders | Vertigo, dizziness |
| 22 | Vision impairment | Vision impairment |
| 23 | Medical Review for Drivers | Frequency of medical review |

National Safety Code
January 2020
Standard 6: Determining Driver Fitness in Canada
57
Chapter 1: Introduction

1.1 Purpose of this part

The medical conditions chapters in this part of the document:

- identify what medical conditions may have an impact on an individual’s fitness to drive
- highlight the risk of impairment and crash associated with certain medical conditions
- identify compensation strategies, devices and/or training that may be used to compensate for the effects of a medical condition on driving, and
- include driver fitness standards to assist authorities in determining whether an individual with a medical condition should be licensed and, if so, the appropriate reassessment interval.

1.2 Source of the medical condition chapters

The medical standards in this part used as a starting point documentation originally developed by British Columbia for medical conditions and fitness to drive which in turn was based on an integrated review by Dr. B. Dobbs.

The medical standards were subsequently further developed by medical advisors and administrators from Canadian provincial driver licensing bodies using sources such as the Canadian Medical Association (CMA) publication Determining Medical Fitness to Operate Motor Vehicles, 9th edition and the Canadian Cardiovascular Society (CCS) publication on Assessment of the cardiac patient for fitness to drive and fly.

The driver licence classes in these standards are based on the CCMTA Classified Driver Licensing System. In general, Classes 1-4 are referring to commercial drivers and classes 5-7 as non-commercial drivers.

1.3 Medical condition chapter template

Below is the template used for the medical condition standards chapters. It is annotated to explain what type of information is found in each section of the template.

NAME OF MEDICAL CONDITION

About the medical condition

Information about the medical condition to assist driver fitness authorities in understanding and applying the guidelines for assessment.
Prevalence

Information about the prevalence of the medical condition, which is relevant to the frequency that it may appear as an issue for licensing.

Medical condition and adverse driving outcomes

Conclusions on the general findings of research on the link between the medical condition and adverse driving outcomes.

Effect on functional ability to drive

Information on the specific effects of the medical condition on the functional abilities needed for driving. This section includes the following table:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>The medical condition and any distinct presentations or variations of the condition</td>
<td>Whether the functional impairment is persistent or episodic, and whether a medical assessment and/or functional assessment is required</td>
<td>The primary functional abilities affected by the medical condition: cognitive, motor, or sensory</td>
<td>The assessment tool to be used, e.g. cognitive road test.</td>
</tr>
</tbody>
</table>

Compensation

Information about whether or not a driver can compensate for the functional impairment caused by medical conditions through the use of strategies or devices. Treatment for a condition, e.g. medication, is not a type of compensation.

Guidelines for assessment

This section names the medical condition and any distinct presentations or variations that require an individual standard. A standard may be for all licence classes (non-commercial classes 5-7 and commercial classes 1-4), for non-commercial drivers only, or for commercial drivers only.

Additional background information about the medical condition may be included here to help provide context for the standard and other information in the following table.
<table>
<thead>
<tr>
<th>Standard</th>
<th>The requirements that must be met in order to be licensed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>Description of any conditions for maintaining a licence. Conditions are ongoing requirements that the driver must meet in order to maintain the licence. For example, ‘wear corrective lenses’ or ‘do not drive if your dialysis regime is delayed’.</td>
</tr>
<tr>
<td>Reassessment</td>
<td>Description of a suggested period on how often an individual will be reassessed after being found eligible for a licence.</td>
</tr>
<tr>
<td></td>
<td>Where a reassessment period is mandatory it is also reflected in the standard.</td>
</tr>
<tr>
<td></td>
<td>Where there is no particular reassessment period for the medical condition, then reassessment is “routine.”</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Description of any information about the medical condition or functional ability that an authority usually requests when applying the standard. This information will come from medical and functional assessments and is supplied by from physicians, driver rehabilitation specialists or other health care providers. Specific information that may be requested includes a professional’s opinion regarding:</td>
</tr>
<tr>
<td></td>
<td>• whether the individual has insight into the impact their medical condition may have on driving</td>
</tr>
<tr>
<td></td>
<td>• whether the individual is compliant with their current treatment regime</td>
</tr>
<tr>
<td></td>
<td>• if known or applicable, whether the individual is compliant with any current conditions for maintaining a licence</td>
</tr>
<tr>
<td>Rationale</td>
<td>A brief description of the rationale for the guide.</td>
</tr>
</tbody>
</table>
Chapter 2: Medical conditions at-a-glance

For each major medical condition identified in the medical condition chapters, the following table identifies:

- whether the resulting impairment is persistent or episodic
- the chapter where the specific information is available

<table>
<thead>
<tr>
<th>Condition</th>
<th>Chapter Reference</th>
<th>Type of Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Persistent</td>
</tr>
<tr>
<td>Abdominal Aortic Aneurysm</td>
<td>13</td>
<td>X</td>
</tr>
<tr>
<td>Aortic dissection</td>
<td>13</td>
<td>X</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>Cerebrovascular diseases</td>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td>Cognitive impairment including dementia</td>
<td>6</td>
<td>X</td>
</tr>
<tr>
<td>Diabetes – Hypoglycemia</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DVT – Pulmonary embolism</td>
<td>13</td>
<td>X</td>
</tr>
<tr>
<td>Hearing loss</td>
<td>9</td>
<td>X</td>
</tr>
<tr>
<td>Intracranial tumours</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>MS, Cerebral Palsy, Parkinson’s</td>
<td>12</td>
<td>X</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Narcolepsy</td>
<td>18</td>
<td>X</td>
</tr>
<tr>
<td>Peripheral arterial disease-severe claudication</td>
<td>13</td>
<td>X</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>14</td>
<td>X</td>
</tr>
<tr>
<td>Renal diseases</td>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>Respiratory diseases</td>
<td>16</td>
<td>X</td>
</tr>
<tr>
<td>Seizures and epilepsy</td>
<td>17</td>
<td>X</td>
</tr>
<tr>
<td>Sleep apnea</td>
<td>18</td>
<td>X</td>
</tr>
<tr>
<td>Syncope</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Traumatic brain injuries</td>
<td>20</td>
<td>X</td>
</tr>
<tr>
<td>Vestibular disorders</td>
<td>21</td>
<td>X</td>
</tr>
<tr>
<td>Vision impairment</td>
<td>22</td>
<td>X</td>
</tr>
</tbody>
</table>
Chapter 3: Cardiovascular disease and disorders

3.1 About cardiovascular disease

Overview
Cardiovascular disease is an umbrella term used to describe a variety of disorders relating to the heart and blood vessels.

Coronary artery disease
Coronary artery disease, which is also called coronary, ischemic or atherosclerotic heart disease, is characterized by the presence of atherosclerosis in the arteries of the heart. Atherosclerosis is the progressive build-up of fatty deposits called plaque, which narrows the coronary arteries and reduces blood flow to the heart. Complications of coronary artery disease include:

- angina (pain or discomfort due to lack of oxygen to the heart muscle)
- myocardial infarction (heart attack), and
- ischemic cardiomyopathy (permanent damage to the heart muscle).

Disturbances of cardiac rhythm
Disturbances of cardiac rhythm, or arrhythmias, include:

- tachycardia (rapid heart rate)
- bradycardia (slow heart rate)
- fibrillation or flutter (abnormal twitching of the heart muscle), and
- heart block.

These arrhythmias may arise from the heart muscle itself or the conduction system and are often secondary to underlying heart disease.

Valvular heart disease
Disease affecting the heart valves may result in stenosis and regurgitation and is associated with an increased risk of thromboembolism.

In valvular stenosis, the valve opening is smaller than normal due to hardening or fusing of the valve’s leaflets. This may cause the heart to have to work harder to pump blood through the valves. In valvular regurgitation or “leaky valve”, the valve does not close tightly enough, allowing some blood to leak backwards across the valve. As the leak worsens, the heart has to work harder to make up for the leaky valve, and less blood may flow to the rest of the body. Stenosis and regurgitation may coexist.

Individuals who have undergone valve replacement surgery are subject to a certain irreducible incidence of late complications such as thromboembolism, dehiscence, infection and mechanical malfunction.
Congestive heart failure

Congestive heart failure usually is a chronic, progressive condition in which the heart is unable to pump the quantity of blood required to meet the body's needs. It is generally the result of heart disease but may be secondary to non-cardiac conditions such as fluid overload and anemia.

The severity of congestive heart failure can be assessed by measuring the fraction of blood being pumped out of the left ventricle with each beat. This is expressed as a ratio called the left ventricle ejection fraction (LVEF). Healthy individuals generally have an LVEF greater than 55%.

The New York Heart Association (NYHA) functional classification system provides a simple, clinical measure for assessing the degree of heart failure. This system describes the effect of cardiovascular disease on an individual’s general physical activity, according to the categories shown in the following table.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No symptoms and no limitation in ordinary physical activity. Comfortable at rest.</td>
</tr>
<tr>
<td>II</td>
<td>Mild symptoms and slight limitation during ordinary activity. Comfortable at rest.</td>
</tr>
<tr>
<td>III</td>
<td>Marked limitation in activity due to symptoms, even during less-than-ordinary activity. Comfortable only at rest.</td>
</tr>
<tr>
<td>IV</td>
<td>Severe limitations. Experiences symptoms even while at rest.</td>
</tr>
</tbody>
</table>

Cardiomyopathy

Cardiomyopathy refers to a change in the size, strength or flexibility in the heart muscle. These changes can reduce the amount of blood being pumped out of the heart and may lead to congestive heart failure. Cardiomyopathy is associated with an increased risk of arrhythmias.
3.2 Prevalence

Cardiovascular disease is a major cause of death, disability and health care costs in Canada. Although cardiovascular disease death rates have been declining since the mid-1960s, statistics from 1997 indicate that cardiovascular disease was still the leading cause of death in Canada, accounting for 36% of all deaths in men and 38% in women. As shown in the graph below, the proportion of deaths caused by cardiovascular disease increases dramatically with age.

![Percentage of total deaths due to cardiovascular disease](image)

3.3 Cardiovascular disease and adverse driving outcomes

Research indicates that drivers with cardiovascular disease as a whole have a higher risk for adverse driving outcomes than those without cardiovascular disease. However, there is relatively little research on the effects of specific cardiovascular disorders and driving outcomes.
3.4 Effect of cardiovascular disease on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach<sup>6</sup></th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary artery disease</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>All – sudden incapacitation</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Arrhythmias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvular heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>Persistent Impairment Functional assessment</td>
<td>Can affect Motor Sensory and Cognitive function</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td>Episodic impairment Medical assessment – likelihood of impairment</td>
<td>All – sudden incapacitation</td>
<td>Functional Assessment</td>
</tr>
<tr>
<td>Post cardiac arrest</td>
<td>Persistent Impairment Functional assessment</td>
<td>Can affect Motor Sensory and Cognitive function</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Post-operative cognitive decline</td>
<td></td>
<td>All – sudden incapacitation</td>
<td>Specialist’s report</td>
</tr>
<tr>
<td>(POCD)</td>
<td>Episodic impairment Medical assessment – likelihood of impairment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁶ See Part 1 for a discussion of the use of functional assessments for driver licensing decisions.
The effect of cardiovascular disease on an individual’s functional ability to drive may be episodic or persistent.

Episodic impairment
The potential episodic impairment is a partial or complete loss of consciousness that incapacitates the driver. This may be caused by a variety of cardiovascular events such as:

- bradyarrhythmias
- tachyarrhythmias
- myocardial disease (massive myocardial infarction)
- left ventricular myocardial restriction or constriction
- pericardial constriction or tamponade
- aortic outflow tract obstruction
- aortic valvular stenosis, or
- hypertrophic obstructive cardiomyopathy.

Persistent impairment
Individuals with congestive heart failure may develop persistent cognitive impairment, loss of stamina or general debility as a result of a reduction of oxygen to the brain, organs and tissues. Cardiac arrest also may cause persistent cognitive impairment where a loss of blood to the brain causes brain damage.

Neurocognitive deficits can occur in individuals undergoing intracardiac procedures (e.g. valve surgery) or extracardiac procedures (e.g. coronary artery bypass graft (CABG) surgery). However, the majority of studies investigating cognitive decline have focused on individuals undergoing CABG surgery. The results of those studies indicate that a significant number of individuals experience post-operative cognitive decline (POCD) for several months after surgery, with documented declines in memory, attention, speed of processing, and executive functioning. Studies indicate that between 20% and 79% of individuals experience POCD between 6 weeks and 6 months of CABG surgery, with a majority of the studies showing a rate of 45% or higher. In those studies that have followed individuals for more than 6 months post-surgery, the results indicate that up to 35% of individuals will show POCD one year after surgery. The current understanding is that POCD is the result of a number of factors associated with cardiac treatment, rather than a single factor such as the use of cardiopulmonary bypass.

3.5 Compensation
Individuals with cardiovascular disease are not able to compensate for their functional impairment.
3.6 Guidelines for assessment

These guidelines are based primarily on recommendations contained in the final report of the 2003 Canadian Cardiovascular Society (CCS) Consensus Conference Assessment of the Cardiac Patient for Fitness to Drive and Fly. The CCS recommendations focus exclusively on the potential for episodic impairment associated with cardiovascular diseases. The guidelines are based on an acceptable threshold for annual risk of sudden incapacitation of one percent or less for commercial drivers. It is recognized that exceptions can be made to the recommended standards if the treating cardiologist estimates the annual risk of sudden incapacitation to less that one percent.

Additional guidelines have been added to address potential persistent cognitive impairment caused by congestive heart failure, and the potential for co-morbid cognitive impairment in relation to cardiac arrest, and post-operative cognitive decline (POCD) following coronary artery bypass graft (CABG) surgery. Where the standards differ from the CCS recommendations, the rationale is included in the table.

For CCS recommendations for transient conditions (waiting periods) see Section 3.6.50 which forms part of the standards.

3.6.1 Congenital heart defects

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they meet any standards related to a specific cardiovascular condition or event</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

Reassessment	• Where the defect has been repaired and the treating physician does not indicate any concerns, as per routine
	• Where the defect has not been repaired, every 5 years or as per routine, whichever is more frequent
	• More frequently at the discretion of the authority

| Information from health care providers | • Whether or not the defect has been repaired |
| | • Presence of any specific cardiovascular condition or event or risk of condition or event that may impair functional ability to drive |

| Rationale | Congenital heart defects are not specifically addressed in the CCS recommendations. This standard is included here to assist where a congenital heart defect is reported to an authority. The nature of congenital heart defects and their treatment is variable; therefore, there are no driver fitness standards specifically for them. |
3.6.2 Acute Coronary Syndromes – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have an angiographic demonstration of less than a 70% reduction in the diameter of the left main coronary artery, or</td>
</tr>
<tr>
<td></td>
<td>• where they have a 70% or greater reduction in the diameter of the left main coronary artery, it has been successfully treated with revascularization</td>
</tr>
<tr>
<td></td>
<td>• the waiting periods have been met (Section 3.6.50)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Every 5 years or as per routine, whichever is more frequent</td>
</tr>
<tr>
<td></td>
<td>• More frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Extent of reduction in the left main coronary artery</td>
</tr>
<tr>
<td></td>
<td>• Where applicable, result of treatment with revascularization</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>

3.6.3 Acute Coronary Syndromes – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have an angiographic demonstration of less than a 50% reduction in the diameter of the left main coronary artery, or</td>
</tr>
<tr>
<td></td>
<td>• where they have a 50% or greater reduction in the diameter of the left main coronary artery, it has been successfully treated with revascularization</td>
</tr>
<tr>
<td></td>
<td>• providing the applicable waiting periods are met (3.6. 50)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Extent of reduction in the left main coronary artery</td>
</tr>
<tr>
<td></td>
<td>• Where applicable, result of treatment with revascularization</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>
3.6.4 Asymptomatic coronary artery disease or stable angina

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
</tbody>
</table>
| Reassessment | • Every 5 years or as per routine, whichever is more frequent
• More frequently at the discretion of the authority |
| Information from health care providers | • Confirmation that coronary artery disease is asymptomatic, or angina is stable |
| Rationale | CCS recommendation |

3.6.5 CABG surgery – Non-commercial drivers

| Guidelines | Non-commercial drivers eligible for a licence if
• it has been 1 month or more since CABG surgery |
Conditions for maintaining licence	None
Reassessment	• Routine or more frequently at the discretion of the authority
Information from health care providers	• Date of CABG surgery
Rationale	CSS recommendations
3.6.6 CABG surgery – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 3 months or more since CABG surgery</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>• Routine or more frequently at the discretion of the authority</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Date of CABG surgery</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CSS recommendations</th>
</tr>
</thead>
</table>

3.6.7 Premature atrial or ventricular contractions

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have no associated impaired level of consciousness caused by cerebral ischemia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

| Reassessment | • Where there is no underlying cardiovascular disease, as per routine
• More frequently at the discretion of the authority |
|--------------|--|

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Confirmation that there is no impaired level of consciousness caused by cerebral ischemia</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>
3.6.8 Ventricular fibrillation with no reversible cause – Non-commercial drivers

This standard applies to non-commercial drivers who have ventricular fibrillation (VF) with no reversible cause. It does not apply to drivers who have VF due to any of the following reversible causes:

- VF within 24 hours of myocardial infarction
- VF during coronary angiography
- VF with electrocution, or
- VF secondary to drug toxicity.

If VF has a reversible cause, it is considered a transient condition, see 3.6.10.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>it has been 6 months or more since their last episode of ventricular fibrillation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>Routine or more frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Date of last episode of ventricular fibrillation</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>
3.6.9 Ventricular fibrillation with no reversible cause – Commercial drivers

This standard applies to commercial drivers who have ventricular fibrillation (VF) with no reversible cause. It does not apply to drivers who have VF due to any of the following reversible causes:

- VF within 24 hours of myocardial infarction
- VF during coronary angiography
- VF with electrocution, or
- VF secondary to drug toxicity.

If VF has a reversible cause, it is considered a transient condition. The CCS recommendation for VF with a reversible cause is included in 3.6.11.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers not eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>N/A</td>
</tr>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>N/A</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>
3.6.10 Hemodynamically unstable VT – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• It has been 6 months since the last episode, and</td>
</tr>
<tr>
<td></td>
<td>• the underlying condition has been successfully treated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Every 5 years or as per routine, whichever is more frequent</td>
</tr>
<tr>
<td></td>
<td>• More frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Whether the underlying condition causing VT has been successfully treated</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>

3.6.11 Hemodynamically unstable VT – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers not eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>N/A</td>
</tr>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>N/A</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>
3.6.12 Sustained VT and an LVEF of < 35% – Non-commercial drivers

This standard applies to non-commercial drivers who have sustained ventricular tachycardia (VT) with:

- a left ventricular ejection fraction (LVEF) of < 35%, and
- no associated impaired level of consciousness.

Sustained VT means VT having a cycle length of 500 msec or less, and lasting 30 seconds or more or causing hemodynamic collapse.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 3 months or more since their last episode of sustained VT</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	None
Reassessment	• Where the driver’s condition is controlled and stable, every 5 years or as per routine, whichever is more frequent
	• More frequently at the discretion of the authority

| Information from health care providers | • Date of last episode of sustained VT |
| Rationale | CSS recommendations |

3.6.13 Sustained VT and an LVEF of <35% – Commercial drivers

This standard applies to commercial drivers who have sustained ventricular tachycardia (VT) with:

- a left ventricular ejection fraction (LVEF) of <35%, and
- no associated impaired level of consciousness.

Sustained VT means VT having a cycle length of 500 msec or less, and lasting 30 seconds or more or causing hemodynamic collapse.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers not eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commercial drivers not eligible for a licence</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>N/A</td>
</tr>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
</tbody>
</table>
3.6.14 Sustained VT and an LVEF of >35% – Non-commercial drivers

This standard applies to non-commercial drivers who have sustained ventricular tachycardia (VT):

- with a left ventricular ejection fraction (LVEF) of > 35%
- with no associated impaired level of consciousness, and
- for whom an implantable cardioverter defibrillator (ICD) has not been recommended.

Sustained VT means VT having a cycle length of 500 msec or less, and lasting 30 seconds or more or causing hemodynamic collapse.

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>

STANDARD

Non-commercial drivers eligible for a licence if

- it has been 4 weeks or more since their last episode of sustained VT, and
- they have been successfully treated with radiofrequency ablation plus a 1 week waiting period or successful pharmacological treatment

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>Annually or more frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Date of last episode of sustained VT</td>
</tr>
</tbody>
</table>

| Rationale | CCS recommendation |
3.6.15 *Sustained VT and an LVEF of >35% – Commercial drivers*

This standard applies to commercial drivers who have sustained ventricular tachycardia (VT):

- with a left ventricular ejection fraction (LVEF) of \(\geq 35\% \)
- with no associated impaired level of consciousness, and
- for whom an implantable cardioverter defibrillator (ICD) has not been recommended.

Sustained VT means VT having a cycle length of 500 msec or less, and lasting 30 seconds or more or causing hemodynamic collapse.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- it has been 3 months or more since their last episode of sustained VT, and</td>
</tr>
<tr>
<td></td>
<td>- they have been successfully treated with radiofrequency ablation plus a 1 week waiting period or successful pharmacological treatment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Annually or more frequently at the discretion of the authority</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Date of last episode of sustained VT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whether the driver has been successfully treated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>
3.6.16 Non-sustained VT

This standard applies to all drivers who have non-sustained ventricular tachycardia (VT).

Non-sustained VT means VT having a cycle length of 500 msec or less and lasting less than 30 seconds without hemodynamic collapse.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>Routine or more frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>None</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>

3.6.17 Paroxysmal SVT, AF or AFL with no impaired consciousness

This standard applies to all drivers who have had paroxysmal:
- supraventricular tachycardia (SVT)
- atrial fibrillation (AF), or
- atrial flutter (AFL)

with no associated impaired level of consciousness.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>Initial reassessment at 5 years or as per routine, whichever is more frequent. If no further recurrences after 5 years, then as per routine • More frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>None</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>
3.6.18 *Paroxysmal SVT, AF or AFL with impaired consciousness*

This standard applies to all drivers who have had paroxysmal:

- supraventricular tachycardia (SVT)
- atrial fibrillation (AF), or
- atrial flutter (AFL)

with an associated impaired level of consciousness.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have been on medical therapy for a minimum of 3 months with no recurrence of paroxysmal SVT, AF, or AFL with impaired level of consciousness</td>
</tr>
<tr>
<td></td>
<td>• for drivers with paroxysmal SVT, it has been successfully treated with radiofrequency ablation</td>
</tr>
<tr>
<td></td>
<td>• for drivers with paroxysmal AF, they have had AV node ablation and pacemaker implantation and meet the standard for pacemaker treatment, and</td>
</tr>
<tr>
<td></td>
<td>• for drivers with paroxysmal AFL, they have had a successful isthmus ablation with proven establishment of bidirectional isthmus block</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>• Initial reassessment at 5 years or as per routine, whichever is more frequent. If no further recurrences after 5 years, then routine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• More frequently at the discretion of the authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Date of last occurrence of paroxysmal SVT, AF, or AFL with impaired level of consciousness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• For drivers with paroxysmal SVT, whether it has been successfully treated with radiofrequency ablation</td>
</tr>
<tr>
<td></td>
<td>• For drivers with paroxysmal AF, whether they have had AV node ablation and pacemaker implantation</td>
</tr>
<tr>
<td></td>
<td>• For drivers with paroxysmal AFL, whether they have had a successful isthmus ablation with proven establishment of bidirectional isthmus block</td>
</tr>
</tbody>
</table>

| Rationale | CCS recommendation |
3.6.19 Persistent or permanent paroxysmal SVT, AF or AFL

This standard applies to all drivers who have persistent or permanent paroxysmal:
- supraventricular tachycardia (SVT)
- atrial fibrillation (AF), or atrial flutter (AFL).

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have adequate ventricular rate control, and</td>
</tr>
<tr>
<td></td>
<td>• they do not experience an impaired level of consciousness</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | None |

| Reassessment | • Every 5 years or as per routine, whichever is more frequent |
| | • More frequently at the discretion of the authority |

| Information from health care providers | • Whether the driver has adequate ventricular rate control |
| | • Whether the driver experiences an impaired level of consciousness |

| Rationale | CCS recommendation |

3.6.20 Sinus node dysfunction

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have no associated symptoms, or</td>
</tr>
<tr>
<td></td>
<td>• where they have associated symptoms, the sinus node dysfunction has been successfully treated with a pacemaker and they meet the standard for pacemaker treatment</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | None |

| Reassessment | • Every 5 years or as per routine, whichever is more frequent |
| | • More frequently at the discretion of the authority |

| Information from health care providers | • Whether the driver has associated symptoms |
| | • Where the driver has associated symptoms, whether they have been successfully treated with a pacemaker |

| Rationale | CCS recommendation |
3.6.21 Atrioventricular (AV) or intraventricular block – Non-commercial drivers

If a permanent pacemaker is implanted, the recommendations in 3.6.23 prevail.

| STANDARD | (a) Non-commercial drivers with
| | (i) isolated first degree AV block
| | (ii) isolated right bundle branch block (RBBB), or
| | (iii) isolated left anterior or posterior fascicular block
| | are eligible for a licence
| | (b) Non-commercial drivers with
| | (i) left bundle branch block (LBBB)
| | (ii) bifascicular block
| | (iii) second degree AV block/Mobitz I
| | (iv) first degree AV block + bifascicular block, or
| | (v) congenital third degree AV block
| | are eligible for a licence if
| | • they have had no associated impaired level of consciousness
| | (c) Non-commercial drivers with
| | (i) second degree AV block; Mobitz II (distal AV block)
| | (ii) alternating LBBB and RBBB, or
| | (iii) acquired third degree AV block
| | are not eligible for a licence

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>
| Reassessment | • Every 5 years or as per routine, whichever is more frequent
| | • More frequently at the discretion of the authority |

| Information from health care providers | • The specific nature of the atrioventricular or intraventricular block
| | • Where the driver has
| | • left bundle branch block (LBBB)
| | • bifascicular block
| | • second degree AV block/Mobitz I
| | • first degree AV block + bifascicular block, or
| | • congenital third degree AV block
| | whether the driver has had any associated impaired level of consciousness |
3.6.22 Atrioventricular (AV) or intraventricular block – Commercial drivers

If a permanent pacemaker is implanted, the recommendations in 3.6.24 prevail.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>(a) Commercial drivers with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i) isolated first degree AV block</td>
</tr>
<tr>
<td></td>
<td>(ii) isolated right bundle branch block (RBBB), or</td>
</tr>
<tr>
<td></td>
<td>(iii) isolated left anterior or posterior fascicular block</td>
</tr>
<tr>
<td></td>
<td>are eligible for a licence</td>
</tr>
</tbody>
</table>

	(b) Commercial drivers with
	(i) left bundle branch block (LBBB)
	(ii) bifascicular block
	(iii) second degree AV block/Mobitz I, or
	(iv) first degree AV block + bifascicular block
	eligible for a licence if
	• they have had no associated impaired level of consciousness, and
	• the conditions for maintaining a licence are met

	(c) Commercial drivers with a congenital third degree AV block are eligible for a licence if
	• they have had no associated impaired level of consciousness
	• they have a QRS duration < 110 msec, and
	• they have a Holter showing no documented pauses > 3 seconds
	• the conditions for maintaining a licence are met

	(d) Commercial drivers with
	(i) second degree AV block; Mobitz II (distal AV block)
	(ii) alternating LBBB and RBBB, or
	(iii) acquired third degree AV block
	are not eligible for a licence
Conditions for maintaining licence

- Drivers with
 - left bundle branch block (LBBB)
 - bifascicular block
 - second degree AV block/Mobitz I, or
 - first degree AV block + bifascicular block

 have an annual Holter that shows there is no higher grade AV block

- Drivers with a congenital third degree AV block have an annual Holter that shows no documented pauses > 3 seconds

Reassessment

- Routine or more frequently at the discretion of the authority

Information from health care providers

- The specific nature of the atrioventricular or intraventricular block

- Where the driver has
 - left bundle branch block (LBBB)
 - bifascicular block
 - second degree AV block/Mobitz I
 - first degree AV block + bifascicular block, or
 - congenital third degree AV block

 whether the driver has had any associated impaired level of consciousness and the results of Holter confirming no higher grade AV block

- Where the driver has congenital third degree AV block, whether they have a QRS duration ≤ 110 msec and the results of a Holter showing no documented pauses ≥ 3 seconds

Rationale

CCS recommendation
3.6.23 Permanent pacemakers – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 1 week or more since pacemaker implant</td>
</tr>
<tr>
<td></td>
<td>• they have not experienced any episodes of impaired level of consciousness since the implant</td>
</tr>
<tr>
<td></td>
<td>• they show normal sensing and capture on a post-implant ECG, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>Regularly check pacemaker at a pacemaker clinic and do not drive if there is a pacemaker malfunction</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Every 5 years or as per routine, whichever is more frequent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• More frequently at the discretion of the authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Whether the driver has experienced any episodes of impaired level of consciousness since the implant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Whether the results of a post-implant ECG show normal sensing and capture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>
3.6.24 Permanent pacemakers – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 1 month or more since pacemaker implant</td>
</tr>
<tr>
<td></td>
<td>• they have not experienced any episodes of impaired level of consciousness since the implant</td>
</tr>
<tr>
<td></td>
<td>• they show normal sensing and capture on a post-implant ECG, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Regularly check pacemaker at a pacemaker clinic and do not drive if there is a pacemaker malfunction |

| Reassessment | • Routine or more frequently at the discretion of the authority |

Information from health care providers	• Date of pacemaker implant
	• Whether the driver has experienced any episodes of impaired level of consciousness since the implant
	• Whether the results of a post-implant ECG show normal sensing and capture

| Rationale | CCS recommendation |
3.6.25 Declined an ICD or have an ICD implanted as primary prophylaxis – Non-commercial drivers

This standard applies to non-commercial drivers who:

- have had an implantable cardioverter defibrillator (ICD) implanted as a primary prophylaxis, or
- have declined an ICD recommended as primary prophylaxis

When implanted as a primary prophylaxis, the ICD is implanted to prevent sudden cardiac death in individuals considered to be at high risk but who have not had an episode of ventricular arrhythmia.

Individuals whose ICD also regulates pacing for bradycardia must also meet the standard for permanent pacemakers in 3.6.23.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I, II, or III</td>
</tr>
<tr>
<td></td>
<td>• it has been 4 weeks or more since ICD implant (if applicable), and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met (if applicable)</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Regularly check ICD at a device clinic and do not drive if there is an ICD malfunction |
| | • Report to the authority if you experience an impaired level of consciousness or disability as a result of ICD therapy |

| Reassessment | • Where the driver’s condition is controlled and stable, every 5 years or as per routine, whichever is more frequent |
| | • More frequently at the discretion of the authority |

| Information from health care providers | • NYHA classification |
| | • Date of ICD implant (if applicable) |

| Rationale | CCS recommendation |
3.6.26 Declined an ICD or have an ICD implanted as primary prophylaxis – Commercial drivers

This standard applies to commercial drivers who:

- have had an implantable cardioverter defibrillator (ICD) implanted as a primary prophylaxis, or
- have declined an ICD recommended as primary prophylaxis

When implanted as a primary prophylaxis, the ICD is implanted to prevent sudden cardiac death in individuals considered to be at high risk but who have not had an episode of ventricular arrhythmia.

Individuals whose ICD also regulates pacing for bradycardia must also meet the standard for permanent pacemakers in 3.6.24.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers generally not eligible for a licence. May be eligible if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- cardiologist assessment indicates that the annual risk of sudden incapacitation is 1% or less, and</td>
</tr>
<tr>
<td></td>
<td>- the driver meets the standard for ICD implanted as a primary prophylaxis in non-commercial drivers 3.6.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>N/A</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation – an ICD may sometimes be implanted in low risk patients. Individual cases may be made for allowing a commercial driver to continue driving with an ICD provided the annual risk of sudden incapacitation is felt to be 1% or less.</td>
</tr>
</tbody>
</table>
3.6.27 ICD implanted as secondary prophylaxis for sustained VT – Non-commercial drivers

STANDARD	Non-commercial drivers eligible for a licence if
	• they are assessed as NYHA Class I, II, or III
	• it has been 1 week or more since ICD implant
	• it has been 3 months or more since their last episode of sustained VT, and
	• the conditions for maintaining a licence are met

| Conditions for maintaining licence | • Regularly check ICD at a device clinic and do not drive if there is an ICD malfunction
| | • Report to the authority if you experience an impaired level of consciousness or disability as a result of ICD therapy

| Reassessment | • Routine or more frequently at the discretion of the authority

| Information from health care providers | • NYHA classification
| | • Date of ICD implant
| | • Date of last episode of sustained VT
| | • Has driver experienced an impaired level of consciousness since ICD implant

| Rationale | CCS recommendation

3.6.27 ICD implanted as secondary prophylaxis for sustained VT – Commercial drivers

STANDARD	Commercial drivers not eligible for a licence
Conditions for maintaining licence	N/A

| Reassessment | N/A

| Information from health care providers | N/A

| Rationale | CCS recommendation

3.6.29 *ICD therapy (shock or ATP) has been delivered – Non-Commercial drivers*

This standard applies to non-commercial drivers where ICD therapy (shock or ATP) has been delivered and there is an associated impaired level of consciousness, or the therapy delivered by the device was disabling.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 6 months or more since the event, and</td>
</tr>
<tr>
<td></td>
<td>• the standard for the underlying cardiovascular condition are met.</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	As per the standard for the underlying cardiovascular condition
Reassessment	As per the standard for the underlying cardiovascular condition
Information from health care providers	Date of the event
Rationale	CCS recommendation

3.6.30 *ICD therapy (shock or ATP) has been delivered – Commercial drivers*

STANDARD	Commercial drivers are ineligible for a licence
Conditions for maintaining licence	n/a
Reassessment	n/a
Information from health care providers	n/a
Rationale	CCS recommendation
3.6.31 **ICD implanted as secondary prophylaxis for VF or VT – Non-commercial drivers**

This standard applies to non-commercial drivers who have had an implantable cardioverter defibrillator (ICD) implanted as a secondary prophylaxis for VF or VT with an impaired level of consciousness.

When implanted as a secondary prophylaxis, the ICD is implanted to prevent sudden cardiac death in individuals who have suffered a cardiac arrest or who suffer from malignant arrhythmias that do not respond readily to medical treatment.

Individuals whose ICD also regulates pacing for bradycardia must also meet the standard for permanent pacemakers in 3.6.23.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• assessed as NYHA class I, II, III</td>
</tr>
<tr>
<td></td>
<td>• it has been 6 months or more since their last episode of sustained symptomatic VT or syncope judged to be likely due to VT or cardiac arrest, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Regularly check ICD at a device clinic and do not drive if there is an ICD malfunction |
|-----------------------------------|• Report to the authority if you experience an impaired level of consciousness or disability as a result of ICD therapy |

| Reassessment | • Where the driver’s condition is controlled and stable, every 5 years or as per routine, whichever is more frequent |
|--------------|• More frequently at the discretion of the authority |

| Information from health care providers | • Date of last episode of sustained symptomatic VT or syncope judged to be likely due to VT or cardiac arrest |

| Rationale | CCS recommendation |
3.6.32 ICD implanted as secondary prophylaxis for VF or VT – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers not eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>N/A</td>
</tr>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>N/A</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>

3.6.33 Inherited heart disease – Non-commercial drivers

This standard applies to non-commercial drivers with the following inherited heart diseases:

- Brugada’s Syndrome
- Long QT Syndrome, and
- Arrhythmogenic right ventricular cardiomyopathy.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• their condition has been investigated and treated by a cardiologist, and</td>
</tr>
<tr>
<td></td>
<td>• it has been 6 months or more since they have experienced any event causing an impaired level of consciousness</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Confirmation that the condition has been investigated and treated by a cardiologist</td>
</tr>
<tr>
<td></td>
<td>• Date of last event causing an impaired level of consciousness (if applicable)</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>
3.6.34 Inherited heart disease – Commercial drivers

This standard applies to commercial drivers with the following inherited heart diseases:

- Brugada’s Syndrome
- Long QT Syndrome, and
- arrhythmogenic right ventricular cardiomyopathy.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers generally not eligible for a licence. May be eligible if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- an assessment by a cardiologist indicates that the annual risk of sudden incapacitation is 1% or less, and</td>
</tr>
<tr>
<td></td>
<td>- the driver meets the standard for inherited heart disease in non-commercial drivers</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>N/A</td>
</tr>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>N/A</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation – Inherited heart diseases may sometimes be identified to pose a very low risk to patients. Individual cases can sometimes be made to allow a commercial driver to continue to drive despite the diagnosis of one of these diseases, provided the annual risk of sudden incapacitation is believed to be less than one percent.</td>
</tr>
</tbody>
</table>
3.6.35 Medically treated valvular heart disease – Non-commercial drivers

This standard applies to non-commercial drivers with medically treated:

- aortic stenosis
- aortic regurgitation
- mitral stenosis, or
- mitral regurgitation.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I or II, and</td>
</tr>
<tr>
<td></td>
<td>• they have had no episodes of impaired level of consciousness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Every 5 years or as per routine, whichever is more frequent</td>
</tr>
<tr>
<td></td>
<td>• More frequently at the discretion of the authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• NYHA classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Whether the driver has had an episode of impaired level of consciousness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>
3.6.36 Medically treated aortic stenosis or aortic sclerosis – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I</td>
</tr>
<tr>
<td></td>
<td>• their condition is asymptomatic</td>
</tr>
<tr>
<td></td>
<td>• they have an aortic valve area (AVA) $\geq 1.0 \text{ cm}^2$</td>
</tr>
<tr>
<td></td>
<td>• they have a left ventricle ejection fraction (LVEF) $\geq 35%$</td>
</tr>
<tr>
<td></td>
<td>• they have had a detailed assessment by a cardiologist, including an assessment for risk of syncope, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>• Have an annual medical follow-up</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>• Annually or more frequently at the discretion of the authority</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• NYHA classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Whether condition is asymptomatic</td>
</tr>
<tr>
<td></td>
<td>• Aortic Valve Area (AVA)</td>
</tr>
<tr>
<td></td>
<td>• Left ventricle ejection fraction (LVEF)</td>
</tr>
<tr>
<td></td>
<td>• Confirmation of cardiologist assessment including risk of syncope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>
3.6.37 Medically treated aortic or mitral regurgitation or mitral stenosis – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I</td>
</tr>
<tr>
<td></td>
<td>• they have a left ventricle ejection fraction (LVEF) $> 35%$</td>
</tr>
<tr>
<td></td>
<td>• they have had no episodes of impaired level of consciousness</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• NYHA classification</td>
</tr>
<tr>
<td></td>
<td>• Left ventricle ejection fraction (LVEF)</td>
</tr>
<tr>
<td></td>
<td>• Whether the driver has had an episode of impaired level of consciousness</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>
3.6.37 Surgically treated valvular heart disease – Non-commercial drivers

This standard applies to non-commercial drivers with:

- mechanical prostheses
- mitral bioprostheses with non-sinus rhythm
- mitral valve repair with non-sinus rhythm
- aortic bioprostheses
- mitral bioprostheses with sinus rhythm, or
- mitral valve repair with sinus rhythm.

<table>
<thead>
<tr>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-commercial drivers eligible for a licence if</td>
</tr>
<tr>
<td>• it has been 6 weeks or more since their discharge following treatment</td>
</tr>
<tr>
<td>• they have no thromboembolic complications, and</td>
</tr>
<tr>
<td>• for drivers with mechanical prostheses, mitral bioprostheses with non-sinus rhythm or mitral valve repair with non-sinus rhythm, they are on anti-coagulant therapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Every 5 years or as per routine, whichever is more frequent</td>
</tr>
<tr>
<td>• More frequently at the discretion of the authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Type of surgical treatment</td>
</tr>
<tr>
<td>• Date of their discharge following treatment</td>
</tr>
<tr>
<td>• Whether there are thromboembolic complications</td>
</tr>
<tr>
<td>• Where applicable, whether the driver is on anti-coagulant therapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>
3.6.39 *Surgically treated valvular heart disease – Commercial drivers*

This standard applies to commercial drivers with:

- mechanical prostheses
- mitral bioprostheses with non-sinus rhythm
- mitral valve repair with non-sinus rhythm
- aortic bioprostheses
- mitral bioprostheses with sinus rhythm, or
- mitral valve repair with sinus rhythm.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 3 months or more since their discharge following treatment</td>
</tr>
<tr>
<td></td>
<td>• they have no thromboembolic complications</td>
</tr>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I</td>
</tr>
<tr>
<td></td>
<td>• they have an LVEF > 35%, and</td>
</tr>
<tr>
<td></td>
<td>• for drivers with mechanical prostheses, mitral bioprostheses with non-sinus rhythm or mitral valve repair with non-sinus rhythm, they are on anti-coagulant therapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Type of surgical treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date of their discharge following treatment</td>
</tr>
<tr>
<td></td>
<td>Whether there are thromboembolic complications</td>
</tr>
<tr>
<td></td>
<td>NYHA classification</td>
</tr>
<tr>
<td></td>
<td>Left ventricle ejection fraction (LVEF)</td>
</tr>
<tr>
<td></td>
<td>Where applicable, whether the driver is on anti-coagulant therapy</td>
</tr>
</tbody>
</table>

| Rationale | CCS recommendation |
3.6.40 Mitral valve prolapse – All drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are asymptomatic, or</td>
</tr>
<tr>
<td></td>
<td>• where they are symptomatic they have been assessed for arrhythmia and they meet any applicable standard for arrhythmia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Where the condition is longstanding and asymptomatic, then routine; otherwise every 5 years or as per routine, whichever is more frequent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• More frequently at the discretion of the authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Whether the driver is asymptomatic</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>

3.6.41 Congestive heart failure – Non-commercial drivers

If using left ventricular assist device (LVAD), see 3.6.43

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I, II, or III</td>
</tr>
<tr>
<td></td>
<td>• they are not receiving intermittent inotropes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Routine or more frequently at the discretion of the authority</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>NYHA Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whether the driver is receiving intermittent inotropes or using a left ventricle assist device</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendations</th>
</tr>
</thead>
</table>
3.6.42 Congestive heart failure – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I or II</td>
</tr>
<tr>
<td></td>
<td>• they have an LVEF of > 35%</td>
</tr>
<tr>
<td></td>
<td>• they are not receiving intermittent inotropes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• NYHA Classification</td>
</tr>
<tr>
<td></td>
<td>• LVEF</td>
</tr>
<tr>
<td></td>
<td>• Whether the driver is receiving intermittent inotropes or using a left ventricle assist device</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CSS recommendations</th>
</tr>
</thead>
</table>

3.6.43 Left ventricular dysfunction or cardiomyopathy – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I, II, or III</td>
</tr>
<tr>
<td></td>
<td>• they are not receiving intermittent inotropes, and</td>
</tr>
<tr>
<td></td>
<td>• if has left ventricular assist device (LVAD) and cardiologist report indicates is stable for 2 months post implantation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• NYHA Classification</td>
</tr>
<tr>
<td></td>
<td>• Whether the driver is receiving intermittent inotropes or using an LVAD</td>
</tr>
<tr>
<td></td>
<td>• Date of LVAD implant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>
3.6.44 Left ventricular dysfunction or cardiomyopathy – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I or II</td>
</tr>
<tr>
<td></td>
<td>• they have an LVEF of ≥ 35%</td>
</tr>
<tr>
<td></td>
<td>• they are not receiving intermittent inotropes, and</td>
</tr>
<tr>
<td></td>
<td>• they are not using a left ventricle assist device</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Routine or more frequently at the discretion of the authority</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>NYHA Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left ventricle ejection fraction (LVEF)</td>
</tr>
<tr>
<td></td>
<td>Whether the driver is receiving intermittent inotropes or using a left ventricle assist device</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>

3.6.45 Heart transplant – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 6 weeks or more since their discharge following transplant</td>
</tr>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I or II</td>
</tr>
<tr>
<td></td>
<td>• they are on stable immunotherapy, and</td>
</tr>
<tr>
<td></td>
<td>• they meet the conditions for maintaining a licence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>Have an annual medical follow-up</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Where the driver’s condition is controlled, stable and asymptomatic, then every 5 years or as per routine, whichever is more frequent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>More frequently at the discretion of the authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Date of the driver’s discharge following transplant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NYHA Classification</td>
</tr>
<tr>
<td></td>
<td>Whether the driver is on stable immunotherapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of the driver’s discharge following transplant</th>
<th>NYHA Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whether the driver is on stable immunotherapy</td>
</tr>
</tbody>
</table>
Rationale

CCS recommendation

3.6.46 Heart transplant – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 6 months or more since their discharge following transplant</td>
</tr>
<tr>
<td></td>
<td>• they are assessed as NYHA Class I</td>
</tr>
<tr>
<td></td>
<td>• they have an LVEF of $> 35%$</td>
</tr>
<tr>
<td></td>
<td>• they are on stable immunotherapy</td>
</tr>
<tr>
<td></td>
<td>• they have no active ischemia, and</td>
</tr>
<tr>
<td></td>
<td>• they meet the conditions for maintaining a licence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>• Have an annual medical follow-up, including a non-invasive test of ischemic burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Date of the driver’s discharge following transplant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• NYHA Classification</td>
</tr>
<tr>
<td></td>
<td>• Left ventricle ejection fraction (LVEF)</td>
</tr>
<tr>
<td></td>
<td>• Whether the driver is on stable immunotherapy</td>
</tr>
<tr>
<td></td>
<td>• Whether the driver has active ischemia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>CCS recommendation</th>
</tr>
</thead>
</table>

3.6.47 Hypertrophic cardiomyopathy – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have had no episodes of impaired level of consciousness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Where the driver’s condition is controlled, stable and asymptomatic, then every 5 years or as per routine, whichever is more frequent</td>
</tr>
<tr>
<td></td>
<td>• More frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Whether the driver has had an episode of impaired level of consciousness</td>
</tr>
<tr>
<td>Rationale</td>
<td>CCS recommendation</td>
</tr>
</tbody>
</table>

3.6.48 Hypertrophic cardiomyopathy – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have had no episodes of impaired level of consciousness</td>
</tr>
<tr>
<td></td>
<td>• they have no family history of sudden death at a young age</td>
</tr>
<tr>
<td></td>
<td>• they have left ventricle wall thickness of < 30 mm</td>
</tr>
<tr>
<td></td>
<td>• they show no increase in blood pressure with exercise, and</td>
</tr>
<tr>
<td></td>
<td>• they have no nonsustained VT, and</td>
</tr>
<tr>
<td></td>
<td>• they meet the conditions for maintaining a licence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>• Have an annual Holter to test for nonsustained VT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Annually until the condition is controlled and stable, then routine</td>
</tr>
<tr>
<td></td>
<td>• More frequently at the discretion of the authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Whether the driver has had an episode of impaired level of consciousness</td>
</tr>
<tr>
<td></td>
<td>• Whether the driver has a family history of sudden death at a young age</td>
</tr>
<tr>
<td></td>
<td>• Whether the driver’s left ventricle wall thickness is < 30 mm</td>
</tr>
<tr>
<td>Condition</td>
<td>Classes 5-7 Non-commercial</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ST elevation MI</td>
<td>1 month after discharge</td>
</tr>
<tr>
<td>Non-ST elevation MI with significant LV damage</td>
<td></td>
</tr>
<tr>
<td>Non-ST elevation MI with minor LV damage</td>
<td>48 hours after PCI</td>
</tr>
<tr>
<td>If PCI performed during initial hospital stay</td>
<td></td>
</tr>
<tr>
<td>If PCI not performed during initial hospital stay</td>
<td>7 days after discharge</td>
</tr>
<tr>
<td>Acute coronary syndrome without MI (unstable angina)</td>
<td>48 hours after PCI</td>
</tr>
<tr>
<td>If PCI performed during initial hospital stay</td>
<td></td>
</tr>
</tbody>
</table>
If PCI not performed during initial hospital stay

<table>
<thead>
<tr>
<th></th>
<th>Non-commercial</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable angina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI</td>
<td>\bullet 48 hours after PCI</td>
<td>\bullet 7 days after PCI</td>
</tr>
</tbody>
</table>

Notes:
- **ST elevation**: refers to the appearance of the ST segment of an electrocardiogram (ECG or EKG)
- **MI**: Myocardial infarction (heart attack)
- **LV**: left ventricle
- **Significant LV damage**: any MI which is not classified as minor
- **Minor LV damage**: an MI defined only by elevated troponin + ECG changes and in the absence of a new wall motion abnormality.

Stable coronary syndromes – waiting periods

<table>
<thead>
<tr>
<th></th>
<th>Non-commercial</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable angina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **PCI**: Percutaneous coronary intervention (angioplasty)

Cardiac surgery for coronary artery disease – waiting periods

<table>
<thead>
<tr>
<th></th>
<th>Non-commercial</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary artery bypass graft</td>
<td>\bullet 1 month after discharge</td>
<td>\bullet 3 months after discharge</td>
</tr>
</tbody>
</table>

B. Disturbances of cardiac rhythm, arrhythmia devices and procedures

Catheter ablation and EPS

<table>
<thead>
<tr>
<th></th>
<th>Non-commercial</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheter ablation procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS with no inducible sustained ventricular arrhythmias</td>
<td>\bullet 48 hours after discharge</td>
<td>\bullet 1 week after discharge</td>
</tr>
</tbody>
</table>

Notes:
- **EPS**: electrophysiology
C. Disturbances of cardiac rhythm and arrhythmia devices

Ventricular arrhythmias

<table>
<thead>
<tr>
<th></th>
<th>Non-commercial</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF with a reversible cause</td>
<td>No driving until/unless successful treatment of underlying condition</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
VF: ventricular fibrillation
Examples of reversible causes of VF:
- VF within 24 hours of myocardial infarction
- VF during coronary angiography
- VF with electrocution
- VF secondary to drug toxicity
Chapter 4: Cerebrovascular disease

4.1 About cerebrovascular disease

Cerebrovascular disease is disease involving the blood vessels supplying the brain.

Transient ischemic attack (TIA)

A transient ischemic attack (TIA) is a brief episode of neurological dysfunction caused by a temporary state of reduced blood flow to the brain. The symptoms of a TIA are similar to a CVA (described below) but are temporary, typically lasting less than one hour and no more than 24 hours. The most common cause of a TIA is a blood clot. A TIA is considered to be a warning sign that a CVA may be imminent. The risk of having a CVA is 10% in the first 90s day following a TIA, with a cumulative 3 year risk of 25%.

Cerebrovascular accident (CVA)

A cerebrovascular accident (CVA) or stroke is defined as rapidly developing clinical signs of focal or global disturbance of cerebral function, with symptoms lasting 24 hours or longer, or leading to death, with no apparent cause other than of vascular origin. A CVA can be classified as either ischemic or hemorrhagic. Ischemic CVA refers to a CVA caused by thrombosis or embolism, and accounts for 85% of all CVAs. Hemorrhagic CVAs are caused by an intracerebral hemorrhage (bleeding within the brain) or subarachnoid hemorrhage (bleeding between the inner and outer layers of the tissue covering the brain).

The symptoms of a CVA vary depending on what part of the brain is affected. The most common symptom is weakness or paralysis of one side of the body with partial or complete loss of voluntary movement or sensation in a leg or arm. There can be speech problems and weak face muscles. Numbness or tingling is very common. A CVA can affect:

- balance
- vision
- swallowing
- breathing, and
- level of consciousness.

Visual or spatial neglect is a common consequence of a CVA. With neglect, damage to the brain causes an individual to ignore one side of their visual field or their body, even if they retain sensation and function. Neglect is usually a result of a stroke affecting the right hemisphere of the brain, therefore causing neglect of the left side. Visual neglect occurs in 33% to 85% of all strokes affecting the right hemisphere.

The prognosis for recovery following a CVA is related to the severity of the CVA and how much of the brain has been damaged. Most functional recovery occurs within the first two months following a CVA.
The risk of a subsequent CVA is approximately 4% per year, with a 10 year cumulative risk of 43%. In the first six months following a CVA, the risk of a subsequent CVA is approximately 9%.

Cerebral aneurysm

A cerebral aneurysm is the localized dilation or ballooning of a cerebral artery or vein resulting from weakness in the wall of the affected vessel. Most cerebral aneurysms have no associated symptoms until they become large or rupture. The majority (50% to 80%) remain small and do not rupture.

Symptoms associated with larger aneurysms include:

- sudden severe headache
- nausea and vomiting
- visual impairment, and
- loss of consciousness.

The risk of rupture increases with the size of the aneurysm. A rupture results in subarachnoid or intracerebral hemorrhage, leading to alterations in consciousness including:

- syncope
- seizures
- visual impairment, and
- respiratory or cardiovascular instability.

Treatment of unruptured cerebral aneurysms is controversial. Treatment options include observation and surgical procedures to prevent blood from flowing into the aneurysm. Risks of surgery include possible damage to other blood vessels, potential for aneurysm recurrence and rebleeding, and post-operative CVA. Successful surgery reduces the risk of rupture.

4.2 Prevalence

Transient ischemic attack

The results of a survey published in 2000 by the National Stroke Association found that half a million adults (18 years of age and older) in Canada had been diagnosed with a TIA. A population-based study in Alberta found the age-adjusted incidence of TIA to be between .04% and .07% (44 and 68 per 100,000) annually.

The risk factors for a TIA are similar to those for a CVA (see below).
Cerebrovascular accident
CVAs are the 4th leading cause of death in Canada and account for 7% of all deaths in Canada. Of the 40,000 to 50,000 Canadians who have a CVA each year, 14,000 will die.

The risk factors for a CVA include:
- high blood pressure
- cigarette smoking
- heart disease
- carotid artery disease
- diabetes, and
- heavy use of alcohol.

The risk for males is three times greater than for females. Risk also increases with age, with those in their 70s and 80s at the greatest risk.

Cerebral aneurysm

Prevalence rates for cerebral aneurysm are unclear because they are often asymptomatic. Autopsy studies indicate a prevalence rate in the adult population between 1% and 5%, with 5% being a widely cited figure.

Under age 40, cerebral aneurysms affect equal numbers of males and females, but are rarely seen in infants and children. Over age 40, more women than men are affected. The peak age for clinical manifestation of cerebral aneurysm is between 55 and 60.

4.3 Cerebrovascular disease and adverse driving outcomes

Transient ischemic attack
There has been little research on the relationship between TIAs and adverse driving outcomes.

Cerebrovascular accident
There has been little research on episodic impairment (sudden incapacitation) of driving ability due to a CVA.

In studies that considered the effects of persistent impairments from CVAs as measured by fitness to drive assessments, 50% or more of the subjects who had a CVA were assessed as unfit to drive. Surveys of drivers who had a CVA indicate that more than half did not resume driving after their CVA.
Cerebral aneurysm

No studies were found that considered the relationship between cerebral aneurysm and adverse driving outcomes.

4.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient ischemic attack (TIA)</td>
<td>Episodic impairment (risk for stroke): Medical assessment – likelihood of impairment</td>
<td>Variable – sudden cognitive, motor or sensory impairment</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Cerebrovascular accident (CVA)</td>
<td>Persistent impairment: Functional assessment</td>
<td>Variable – cognitive, motor or sensory</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional assessment</td>
</tr>
<tr>
<td>Cerebral aneurysm</td>
<td>Episodic impairment (risk of rupture): Medical assessment – likelihood of impairment</td>
<td>All – sudden impairment</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td>Persistent impairment (where symptomatic): Functional assessment</td>
<td>Variable – cognitive, motor or sensory</td>
<td>Medical assessments</td>
</tr>
</tbody>
</table>

Transient ischemic attack

The primary concern for licensing is the potential for a subsequent CVA. The greatest risk is within the 3 months following the TIA.

Cerebrovascular accident

The primary concern for licensing is the potential for a persistent impairment of functional ability following a CVA. Depending on what part of the brain is affected, cognitive, motor or sensory functions may be impaired.

Cerebral aneurysm

The primary concern for licensing is the risk of an episodic impairment caused by rupture of the aneurysm. Generally, this risk is not considered significant for licensing purposes unless the aneurysm is symptomatic or has been identified as requiring surgical intervention.
A large or leaking cerebral aneurysm could result in a persistent impairment of cognitive, motor or sensory functions depending on its size and location.

4.5 Compensation

Drivers who have experienced a persistent impairment of motor or sensory function may be able to compensate. An occupational therapist, driver rehabilitation specialist, driver examiner or other medical professional may recommend specific compensatory vehicle modifications or restrictions based on an individual functional assessment. The effectiveness of individual vehicle modifications may be determined through a road test.

Some examples of compensatory mechanisms are shown in the following table.

<table>
<thead>
<tr>
<th>Motor impairment</th>
<th>Sensory (vision) impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Steering wheel spinner knob</td>
<td>• Scanning horizon more frequently</td>
</tr>
<tr>
<td>• Left-foot accelerator pedal</td>
<td>• Turning head 90° to maximize area scanned</td>
</tr>
<tr>
<td>• Restriction to automatic transmission or power-assisted brakes</td>
<td>• Large left and right-side mirrors</td>
</tr>
<tr>
<td>• Downgrade from commercial to non-commercial driving</td>
<td></td>
</tr>
</tbody>
</table>
4.6 Guidelines for assessment

4.6.1 Transient ischemic attack (TIA)

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a license if:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• complete medical assessment shows no residual effects</td>
</tr>
<tr>
<td></td>
<td>• any underlying cause has been addressed with appropriate treatment</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a license are met.</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Remain under regular medical supervision and follow any prescribed diagnostic or treatment regime |
| | • Report any further TIAs to the authority |

| Reassessment | • Reassess in one year if the TIA occurred within the past 12 months. If TIA occurred more than one year ago, or the medical information indicates no residual effects, any underlying cause has been addressed with treatment, and no post TIA seizure has occurred, re-assessment may occur in accordance with commercial or age-related re-assessment unless a shorter reassessment interval is recommended by the treating physician. |

Information from health care providers	• Date of the TIA
	• Whether the driver remains under regular medical supervision
	• Opinion of treating physician whether the driver follows any prescribed diagnostic or treatment regime

| Rationale | The primary driver concern with a TIA is the risk for a CVA after a TIA. By definition, there are no persistent impairments associated with a TIA. The risk for a CVA is greatest immediately after the TIA and decreases significantly over time. Subject matter experts recommended a minimum no-driving period of two weeks, with appropriate follow-up and treatment. |
4.6.2 Cerebrovascular accident (CVA)

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Complete medical assessment shows no residual effects</td>
</tr>
<tr>
<td></td>
<td>• any underlying cause has been addressed with appropriate treatment</td>
</tr>
<tr>
<td></td>
<td>• a post CVA seizure has not occurred</td>
</tr>
<tr>
<td></td>
<td>• the functional abilities necessary for driving are not impaired, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	• Remain under regular medical supervision and follow your physician’s advice regarding treatment
	• Report any further CVAs to the authority
	(Note that additional conditions may be required, depending upon the nature of any functional impairment and the ability of the driver to compensate)

| Reassessment | • Reassess in one year if the CVA occurred within the past 12 months. If CVA occurred more than one year ago, or the medical information indicates no residual effects, any underlying cause has been addressed with treatment, and no post CVA seizure has occurred, re-assessment may occur in accordance with commercial or age-related re-assessment unless a shorter reassessment interval is recommended by the treating physician. |

Information from health care providers	• Date of the CVA
	• Opinion of treating physician whether any underlying cause has been addressed with appropriate treatment
	• Whether the driver has experienced a post CVA seizure
	• Opinion of treating physician whether there may be significant residual loss of the functional abilities necessary for driving, and if yes, the results of any functional assessments the physician carried out, e.g. cognitive screen
	• Whether the driver remains under regular medical supervision
	• Opinion of treating physician whether the driver is compliant with the physician’s advice regarding treatment

| Rationale | The primary driver fitness concern with a CVA is the potential for a persistent impairment. Subject matter experts recommended a |
minimum no-driving period of one month, with appropriate follow-up and treatment.

4.6.3 Cerebral aneurysm that requires surgical repair

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers not eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>N/A</td>
</tr>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Rationale
The primary concern with a cerebral aneurysm is the risk of rupture. Where the risk of rupture is such that surgery is recommended to repair the rupture, a driver is not eligible for a licence.

4.6.4 Surgery to repair a cerebral aneurysm – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>if it has been at least 3 months since the surgery, and</td>
</tr>
<tr>
<td></td>
<td>the driver has no symptoms of the aneurysm, or</td>
</tr>
<tr>
<td></td>
<td>if the driver continues to have symptoms, the symptoms do not impair the functional abilities necessary for driving</td>
</tr>
<tr>
<td>Reassessment</td>
<td>None</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Date of the surgery</td>
</tr>
<tr>
<td></td>
<td>Whether the driver experiences any symptoms of the aneurysm, and if yes, a description of the symptoms</td>
</tr>
<tr>
<td></td>
<td>Opinion of treating physician if any symptoms impair the functional abilities necessary for driving, and if yes, the results of any functional assessments the physician carried out</td>
</tr>
</tbody>
</table>

Rationale
Successful surgical treatment for a cerebral aneurysm significantly reduces the risk of rupture. A waiting period of 3 months after
surgery is imposed to allow for an assessment of the effectiveness of the surgery or any complications of surgery. The impact of any symptoms caused by the aneurysm or by complications from surgery should be assessed.

4.6.5 Surgery to repair a cerebral aneurysm – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial driver eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been at least 6 months since the surgery, and</td>
</tr>
<tr>
<td></td>
<td>• the driver has no symptoms of the aneurysm, or</td>
</tr>
<tr>
<td></td>
<td>• if the driver continues to have symptoms, the symptoms do not impair the functional abilities necessary for driving</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• If the driver has no symptoms of the aneurysm, routine</td>
</tr>
<tr>
<td></td>
<td>• Otherwise, to be determined on an individual basis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Date of the surgery</td>
</tr>
<tr>
<td></td>
<td>• Whether the driver experiences any symptoms of the aneurysm, and if yes, a description of the symptoms</td>
</tr>
<tr>
<td></td>
<td>• Opinion of treating physician whether any symptoms may impair the functional abilities necessary for driving, and if yes, the results of any functional assessments the physician carried out, e.g. cognitive screen</td>
</tr>
</tbody>
</table>

| Rationale | The waiting period for commercial drivers is longer than that for non-commercial drivers in order to provide more certainty about the success of surgery prior to a return to driving. |
Chapter 5: Chronic renal disease

5.1 About chronic renal disease

Overview

Chronic renal (kidney) disease is a progressive disease involving deterioration and destruction of renal nephrons, with a progressive and usually permanent loss of renal function. Diabetes, hypertension and glomerulonephritis are leading causes of chronic renal disease. It is divided into five stages of increasing severity, as shown in the table below. The stages are based on a measurement of kidney function called the glomerular filtration rate (GFR).

Stages of Chronic Renal Disease

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>GFR mL/min/1.73m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slight kidney damage – normal or elevated GFR</td>
<td>More than 90</td>
</tr>
<tr>
<td>2</td>
<td>Kidney damage – mild decrease in GFR</td>
<td>60 to 89</td>
</tr>
<tr>
<td>3</td>
<td>Kidney damage – moderate decrease in GFR</td>
<td>30 to 59</td>
</tr>
<tr>
<td>4</td>
<td>Kidney damage – severe decrease in GFR</td>
<td>15 to 29</td>
</tr>
<tr>
<td>5</td>
<td>Kidney failure – dialysis or transplant required</td>
<td>Less than 15</td>
</tr>
</tbody>
</table>

5.2 Prevalence

The prevalence of chronic renal disease in the adult population in the United States is estimated to be 11% and it is assumed that the prevalence in Canada would be approximately the same. It is more prevalent in the elderly population.

Stage 5 of chronic renal disease (kidney failure) is also referred to as end-stage renal disease (ESRD) and is characterized by a total or near-total loss of kidney function where an individual requires dialysis or transplantation to stay alive. The prevalence rates for ESRD have increased substantially since 1997, most likely because of improved survival rates among high-risk populations, e.g. people with diabetes and hypertension, as well as improvements in management of ESRD, and the aging of the population.

5.3 Chronic renal disease and adverse driving outcomes

The evidence linking chronic renal disease with adverse driving outcomes is weak because there has been limited research in this area and the research that is available is either dated or has methodological limitations.
5.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic renal disease</td>
<td>Persistent impairment: Functional assessment</td>
<td>Variable - Cognitive and Motor</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>(Stage 3 and 4)</td>
<td></td>
<td>May also result in general debility</td>
<td>Functional Assessment</td>
</tr>
<tr>
<td>End-stage renal disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal transplant</td>
<td>Persistent impairment: Functional assessment</td>
<td>Variable - Cognitive and Motor</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional Assessment</td>
</tr>
</tbody>
</table>

Cognitive impairment

Evidence suggests that cognitive impairment is associated with chronic renal disease and that with increasing disease severity there is also a corresponding decrease in cognitive functioning, which may impair functional ability to drive.

The highest risk of cognitive impairment is for those with ESRD (stage 5). There is a small body of literature indicating that ESRD is associated with diminished perceptual motor-coordination, impairments in intellectual functioning including decreased attention and concentration, and memory impairments. Some studies indicate that individuals with ESRD have a 2 to 7 times higher prevalence of cognitive impairment and dementia compared to the general population.

There is also evidence of a significant risk of cognitive impairment for those in Stage 3 and 4 of chronic renal disease. There is no evidence to suggest that risk of cognitive impairment in the early stages (stage 1 and 2) is significant enough to impair driving.

Research indicates that cognitive impairment ranging from mild to severe is common and often undiagnosed in dialysis patients. In particular, between 30% and 47% of older patients undergoing treatment by hemodialysis or peritoneal dialysis were classified as cognitively impaired. In the general population, 8% of Canadians 65 and over have dementia and another 17% have some form of cognitive impairment. One study also indicated that physicians had a tendency to underestimate cognitive impairment in patients undergoing dialysis.

7 See Part 1 for a discussion of the use of functional assessments for driver licensing decisions.
Improvement in cognitive performance has been reported in individuals who have undergone a kidney transplant.

General debility
Drivers with chronic renal disease, particularly end-stage renal disease, may develop general debility resulting in a loss of stamina required to support the functions necessary for driving.

5.5 Compensation
Drivers with chronic renal disease are not able to compensate for their functional impairment.

5.6 Guidelines for Assessment

5.6.1 Renal disease - All Drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers are eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>None</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>None</td>
</tr>
<tr>
<td>Rationale</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6: Cognitive impairment including dementia

6.1 About cognitive impairment and dementia

Cognitive impairment, also called cognitive dysfunction, neuropsychological impairment or neurocognitive disorder, refers to any impairment of a cognitive function such as:

- memory
- attention
- language
- problem solving, or
- judgment.

Cognitive impairment may have any number of causes including:

- brain trauma
- anoxia (lack of oxygen to the brain)
- infection
- toxicities, or
- degenerative, metabolic or nutritional diseases.

The presentation of cognitive impairment is variable depending on the cognitive functions affected and the degree of impairment. Cognitive impairment may progress to dementia, it may remain stable, or there may be a recovery of normal cognitive function.

Dementia

Dementia refers to a disorder characterized by memory impairment in conjunction with one or more other cognitive deficits. In North America, the most commonly used criteria for the diagnosis of a dementia are those articulated by the American Psychiatric Association DSM-5 retained the term “dementia” from the previous edition for continuity but replaced it officially with “major neurocognitive disorder”. It points out that dementia is generally associated with the older individual while a neurocognitive disorder was the term used for younger individuals with the same symptoms. Therefore DSM-5 advocates using the same term for individuals of all ages who manifest major cognitive limitations. However, since dementia is still an accepted term according to DSM-5 and is the term most commonly used by researchers and licensing authorities in referring to this condition, for simplicity it will continue to be used in this chapter. Neurocognitive disorders will be used when referring to all types of cognitive limitations.
The defining features of dementia are:

A. Evidence of significant cognitive decline from a previous level of performance in one or more cognitive domains (complex attention, executive function, learning and memory, language, perceptual-motor, or social cognition) based on:
 1. Concern of the individual, a knowledgeable informant, or the clinician that there has been a significant decline in cognitive function; and
 2. A substantial impairment in cognitive performance, preferably documented by standardized neuropsychological testing or, in its absence, another quantified clinical assessment.

B. Cognitive deficits interfere with independence in everyday activities (i.e. at a minimum, requiring assistance with complex instrumental activities of daily living such as paying bills or managing medications).

C. The cognitive deficits do not occur exclusively during the context of a delirium.

D. The cognitive deficits are not better accounted for by another mental disorder (e.g. major depressive disorder, Schizophrenia). \(^8\)

Dementia has many causes and more than 100 types of dementia have been documented. The five most common types of dementia are:

- Alzheimer’s disease
- vascular dementia (multi-infarct dementia)
- mixed Alzheimer’s and vascular dementia
- major or minor neurocognitive disorders with Lewy bodies (Lewy body dementia), and
- frontotemporal dementia (Pick’s disease or Pick’s complex). Frontotemporal dementia may not meet all of the criteria noted for dementia, especially in the early stages, but may still result in significant functional impairment.

These types of dementia are all progressive and irreversible, and are characterized by impairments in multiple cognitive functions.

In Alzheimer’s disease, the most common form of dementia, the earliest cognitive symptoms include difficulties in:

- recent memory
- word finding
- confrontation naming

\(^8\) DSM-5, p 591-645
• orientation, and
• concentration.

Characteristics of later stages include:
• slowed rates of information processing
• attentional deficits
• disturbances in executive functions, and
• impairments in language, perception and praxis.

Less commonly, neurocognitive disorders can result from:
• head injury and trauma
• brain tumours
• depression
• hydrocephalus (excessive accumulation of cerebrospinal fluid (CFS) in the brain)
• bacterial and viral infections
• toxic, endocrine and metabolic causes, or
• anoxia.

Some of these neurocognitive disorders may be reversible. Specific examples of reversible causes of dementia include:
• thyroid deficiency or excess
• vitamin B12 deficiency
• chronic alcoholism
• abnormal calcium levels
• dementia associated with celiac disease, and
• intracranial space-occupying lesions.

Treatment for dementia has become available over the last decade with cognition enhancing drugs such as donepezil (Aricept™), galantamine (Reminyl™) and rivastigmine (Exelon™). These drugs seem to improve symptoms of the disease in some stages of dementia, but their therapeutic effect is variable. It is generally considered not likely that treatment with medication would improve cognition to a degree that would enable driving in those whose driving skills had declined to an unsafe level or those who had previously failed a driving assessment due to cognitive impairment.
Mild cognitive impairment

Mild cognitive impairment (MCI) (mild neurocognitive disorder according to DSM-5) is a term that usually refers to the transitional state between the cognitive changes associated with normal aging and the fully developed clinical features of dementia. The diagnostic criteria for MCI are evolving but in general it describes a cognitive decline that presents no significant functional impairment.

A simple summary of factors in determining degree of Dementia and Mild Cognitive Impairment include:

<table>
<thead>
<tr>
<th>Mild Cognitive Impairment (MCI)</th>
<th>Mild Dementia</th>
<th>Moderate Dementia</th>
<th>Severe Dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Some memory impairment but dementia not definitively diagnosed)</td>
<td>Has difficulty with complex tasks or instrumental activities of daily living (e.g. finances, shopping, planning dinner, cooking, taking medication, telephoning etc.)</td>
<td>Has difficulty with basics activities of daily living (e.g. eating, dressing hygiene)</td>
<td>Decreased ability to use toilet and is incontinent</td>
</tr>
<tr>
<td>Forgets name, location of objects</td>
<td>Needs help choosing and putting on clothing</td>
<td>Vocabulary limited</td>
<td></td>
</tr>
<tr>
<td>May have trouble finding words</td>
<td>Requires prompting and assistance when bathing</td>
<td>Loses ability to walk and sit</td>
<td></td>
</tr>
<tr>
<td>May have difficulty traveling to new locations</td>
<td></td>
<td>Unable to smile</td>
<td></td>
</tr>
<tr>
<td>May have difficulty with problems at work</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Delirium

Delirium is a condition characterized by a disturbance of consciousness and a change in cognition that occurs over a relatively short period of time, usually hours to days. Common causes of delirium include:

- vascular disorders (e.g. stroke, myocardial infarct)
- infections (e.g. urinary tract, chest)
- drugs (e.g. analgesics, sedatives, alcohol, illicit drugs), and
- metabolic disorders (e.g. renal failure, hepatic failure, endocrine disorders).

Although the symptoms of delirium may be similar to dementia, delirium is temporary and therefore considered a transient impairment for licensing purposes.
6.2 Prevalence

Estimates from the Canadian Study on Health and Aging (1991) suggest that 8% of all Canadians aged 65 and older meet the criteria for dementia, increasing to 34.5% for those 85 and older. A 2004 study projected that, in 2007, there would be 65,780 individuals with dementia in British Columbia, 44,130 of whom would have Alzheimer’s disease.

In relation to cognitive impairment from any cause that has not been diagnosed as dementia, research indicates that the prevalence is from 2% to 10% at age 65, and 2% to 25% by age 85.9

The prevalence of cognitive impairment (all causes – not dementia) increases with age. When combined, the prevalence of mild and major neurocognitive disorders is 3% to 12% at age 65 and 35% to 55% by age 85.10

6.3 Cognitive impairment, dementia and adverse driving outcomes

Research clearly indicates that, as a group, those with dementia are at higher risk for adverse driving outcomes. In particular, individuals with dementia who experience behavioural disturbances and who are treated with psychotropic medications (e.g. antipsychotics, antidepressants) may be at increased risk. It is important to note that studies also indicate that many individuals with cognitive limitations show no evidence of deterioration of driving skills in the early stages of their illness.

The significance of cognitive impairment and dementia in relation to driving was the subject of a study of a panel of experts in the context of the revision of the CMA medical guide.11 Following an extensive review of the scientific literature, the study’s principal conclusions are:

1. Cognitive problems often have a direct effect upon fitness to drive and any indications of possible cognitive compromises of fitness to drive must not be neglected by clinicians.
2. Diagnosis of dementia alone is not sufficient to withdraw driving privileges.
3. Severe dementia is an absolute contraindication to driving.
4. No in-office test or battery of tests, including global cognitive screens such as MMSE or MoCA have sufficient sensitivity or specificity to be used as the sole determinant of driving fitness in all cases. However, abnormalities in these tests indicate a requirement for further testing.
5. Patients with dementia who are deemed fit to drive should be re-evaluated every 6 to 12 months or sooner, if indicated.
6. A clinician with doubts about a patient’s cognitive functioning and its effects upon driving should refer the patient for a functional driving assessment by an occupational therapist or directly to the licensing authority.

9 DSM-5, p. 608
10 DSM-5, p. 608
7. As with many disabling progressive diseases that lead to driving cessation, conversations regarding eventual retirement from driving should be held as early as possible.

6.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
</table>
| Cognitive impairment of all types including Dementia | Persistent impairment: Functional assessment | Cognitive | Medical assessments

Cognitive impairments of any nature may, or may not, affect driver fitness since there is no uniform range of effects. There is no standard set of limitations, and they can vary greatly from one person to the other.

In the case of MCI the effects may be subtle and difficult to assess in an office setting. Judgement and insight are important for driving yet the usual battery of tests used to assess the extent of cognitive limitations do not evaluate these functions. Hence, a functional driving assessment is usually the most appropriate means of assessing the effects of the cognitive limitations upon driving unless severe dementia has been demonstrated.
6.5 Compensation

Drivers with cognitive impairment or dementia are not able to compensate for their functional impairment.

Requiring the cognitively-impaired driver to be accompanied by another person (co-pilot) or the imposition of geographical or any other restrictions (conditional licences) are not permitted.

6.6 Guidelines for assessment

6.6.1 Cognitive impairment or dementia

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Eligible for any class licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Complete medical assessment indicates cognitive functions necessary for driving are not impaired, or</td>
</tr>
<tr>
<td></td>
<td>• where required, functional driving assessment shows condition does not affect ability to drive</td>
</tr>
<tr>
<td></td>
<td>• Conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>Reassessment annually or as required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requiring the cognitively-impaired driver to be accompanied by another person (co-pilot) or the imposition of geographical or any other restrictions (conditional licences) are not permitted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>• Reassess annually if a driver has dementia or a progressive cognitive impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Otherwise, routine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Nature or cause of the cognitive impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Opinion of treating physician whether the cognitive impairment may be progressive</td>
</tr>
<tr>
<td></td>
<td>• Various tools such as OT driving assessments, cognitive screens and road tests may be helpful in assessing whether an individual with cognitive impairment is eligible to hold licence.</td>
</tr>
</tbody>
</table>

| Rationale | Functional assessment is required to determine if individual can drive safely. |
6.6.2 Severe Dementia

| STANDARD | Ineligible for any class of licence |
Chapter 7: Diabetes - Hypoglycemia

7.1 About diabetes and hypoglycemia

Diabetes

Diabetes is a chronic and progressive disease characterized by hyperglycemia (high blood glucose). It appears in two principal forms:

- type 1 diabetes, formerly called insulin-dependent diabetes mellitus (IDDM) or juvenile diabetes, and
- type 2 diabetes, formerly called non-insulin-dependent diabetes mellitus (NIDDM) or adult-onset diabetes.

Type 1 and type 2 also differ in the underlying defect, and type of therapeutic control.

Type 1 diabetes

Type 1 diabetes can occur at any age, but it primarily appears before age 30. It is characterized by the inability to produce insulin and often more marked fluctuations in blood glucose. Daily insulin injections are always required to manage type 1 diabetes.

Type 2 diabetes

Type 2 diabetes usually occurs in individuals over the age of 40. It is characterized by an impaired ability to recognize and utilize insulin, and eventually diminished insulin production. Therapeutic control often is achieved by diet alone or in combination with oral antihyperglycemic agents, but people with type 2 diabetes whose blood glucose cannot be controlled in this way require treatment with insulin.

Hypoglycemia

Anyone who requires treatment with insulin is at risk of hypoglycemia. Those with type 2 diabetes treated with insulin secretagogues (medications that stimulate the secretion of insulin) or metformin (an oral medication that enhances the effect of insulin) also may experience hypoglycemia, although the frequency with this treatment is lower than with insulin.

Hypoglycemia may occur for a number of reasons, including reduced food intake, unusual level of physical exertion, and alteration of insulin dose.

Hypoglycemia can result in two types of symptoms, neurogenic (autonomic) and neuroglycopenic.

12 Other types of diabetes include gestational diabetes, other specific types (those due to genetic defects in β-cell function, genetic defects in insulin action, diseases of the exocrine pancreas, drug or chemical induced diabetes, etc.), and pre-diabetes. These types of diabetes are less common than type 1 and type 2 diabetes and are not discussed in this chapter.

13 Oral antihyperglycemics also may be referred to as oral hypoglycemics.
Neurogenic symptoms of hypoglycemia

The body’s immediate response to low blood sugar is to secrete hormones that counteract insulin, including adrenaline. The presence of adrenaline causes neurogenic (or autonomic) symptoms such as tremulousness, palpitations, anxiety, sweating, hunger and paresthesias (tingling and numbness). People with diabetes learn to recognize these symptoms as evidence of hypoglycemia and respond by consuming sugary liquids or starchy foods to increase their blood glucose level.

Neuroglycopenic symptoms of hypoglycemia

Neuroglycopenic symptoms are the direct result of impaired brain function due to low glucose levels. These symptoms include confusion, weakness or fatigue, severe cognitive failure, seizure and coma. As the blood glucose level falls, higher cortical function (insight, judgment, calculation, speech and memory) is the first to be affected. Next, a person will experience stupor, characterized by confusion, slurred speech, slow reaction times, poor judgment and lack of coordination. If the level continues to fall, there will be loss of consciousness, seizures and potentially brain damage or death.

Hypoglycemia unawareness

Another complicating factor is hypoglycemia unawareness, which is the inability to recognize the autonomic symptoms of hypoglycemia or a failure of such warning signs to occur prior to impaired brain function. If the initial autonomic symptoms caused by the release of adrenaline are missed, a person experiencing hypoglycemia can only rely on the neuroglycopenic symptoms as an indicator of low blood glucose. Because these symptoms appear in the context of cognitive impairment, they are not easily recognized by the hypoglycemic individual and may delay or prevent self-treatment.

Severe hypoglycemia

Severe hypoglycemia is commonly defined as hypoglycemia that requires outside intervention to abort, or that produces an alteration in level of consciousness or loss of consciousness. The altered or reduced level of consciousness prevents a person experiencing severe hypoglycemia from taking appropriate action.

7.2 Prevalence

Diabetes

Based on research conducted by the National Diabetes Surveillance System, it is estimated that approximately 5% of Canadians aged 20 years and older have been diagnosed with diabetes. Diabetes is somewhat more prevalent in males, and the overall prevalence of diabetes increases with age, as shown in the figure below. It is estimated that 5 to 10% of diagnosed diabetes is type 1, and 90 to 95% is type 2.
Hypoglycemia

A study of people with type 1 diabetes conducted in 1993 estimated that the incidence of mild hypoglycemia (hypoglycemia for which a person is able to treat themselves) to be 28 episodes per person per year. The incidence of severe hypoglycemia was estimated to be 0.31 episodes per person, per year. Since the mid 1990’s there has been an increased therapeutic emphasis on tight glycemic control, which has been shown to significantly reduce the complications of diabetes. Unfortunately, the use of more intensive treatment to maintain glycemic control has increased the risk of hypoglycemia by as much as two or three times. This suggests that these estimates on the prevalence of hypoglycemia in type 1 diabetes may be low.

While people with type 2 diabetes who are treated with insulin are at risk of hypoglycemia, the frequency is lower than for those with type 1 diabetes. The incidence of severe hypoglycemia for type 2 diabetes treated with insulin secretagogues is about 1 to 2% per year, with higher risk for longer use, older age, and the use of chlorpropamide and other long-acting secretagogues. The concomitant use of beta blockers and insulin previously has been thought to increase the risk of hypoglycemia; however, this theoretical concern is not often seen in practice.

For anyone with diabetes, a history of severe hypoglycemia, hypoglycemia unawareness, and low blood glucose levels are consistent predictors of future hypoglycemia.

Hypoglycemia unawareness

It is estimated that 25% of all those treated with insulin will experience one or more episodes of hypoglycemia unawareness. In type 1 diabetes, hypoglycemia unawareness increases with the duration of diabetes and the likelihood increases if autonomic neuropathy is present. In type 2 diabetes, hypoglycemia unawareness is relatively uncommon.
Factors that may be associated with hypoglycemia unawareness include older age, duration of diabetes, presence of autonomic neuropathy, species of insulin, degree of metabolic control, and number of hypoglycemic events.

7.3 Diabetes and adverse driving outcomes

Over the last twenty years the scientific evidence on the relationship between diabetes and crash risk has evolved, in part as a reflection of better management and control. Although there is some variability in results of research on drivers with diabetes, there is clear evidence to show that both non-commercial and commercial drivers with diabetes are at an increased risk of motor vehicle crashes.

It has been shown that diabetes treatment modality is an important consideration in determination of risk for drivers. Study results consistently indicate that individuals taking insulin have an elevated risk of crashes. Some studies have also shown an elevated risk of crash for drivers with type 2 diabetes who are treated with a combination of oral antihyperglycemics (secretagogues and non-secretagogues). Those treated by diet alone or with a single oral antihyperglycemic agent have shown no elevated risk of crash.

A relationship between hypoglycemia and crashes has also been found. Despite a lack of data from studies of large samples of people with diabetes, a number of small studies have shown a relationship between hypoglycemic reactions and motor vehicle crashes.

While research has established clear links between diabetes, hypoglycemia and motor vehicle crashes, the variable results of these studies indicate that decisions about driving should be based on assessment of individual medical history and circumstances including:

- treatment modality
- incidence of hypoglycemia
- incidence of hypoglycemia unawareness, and
- presence of chronic complications of diabetes.

7.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe hypoglycemia</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>All – sudden incapacitation</td>
<td>Medical assessments</td>
</tr>
</tbody>
</table>
For individuals with diabetes, both acute and chronic complications of the disease may affect fitness to drive.

Hyperglycemia may cause blurred vision, confusion, and eventually diabetic coma. For the purposes of this standard, these are considered transient impairments.

The neuroglycopenic symptoms associated with severe hypoglycemia can significantly impair the sensory, motor and cognitive functions required for driving. There are studies that suggest that mild hypoglycemia may also impair these functions.

While it is clear that the risk of hypoglycemia is an important consideration when assessing the fitness of drivers with diabetes, research indicates that the chronic complications of diabetes are more likely to be responsible for impaired fitness to drive than episodic incidents of hypoglycemia. Over time, people with diabetes often develop co-morbidities caused by their prolonged exposure to hyperglycemia. These complications of diabetes include retinopathy, neuropathy, nephropathy, cardiovascular disease and peripheral vascular disease. Therefore, the effect of chronic complications always must be considered when assessing fitness to drive for people with diabetes.

7.5 Compensation

As severe hypoglycemia is an episodic impairment, a driver cannot compensate.

7.6 Guidelines for assessment

7.6.1 Type 2 diabetes – All drivers

- treated with diet and exercise alone or
- oral medication - non insulin secretagogues medication, i.e. metformin or,
- oral medication - insulin secretagogues i.e. glyburide, diamicron, etc.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for any licence class if:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• has good understanding if their condition</td>
</tr>
<tr>
<td></td>
<td>• routinely follows their physicians instructions about diet, medication, glucose, glucose monitoring and hypoglycaemia prevention</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • remains under regular medical supervision to ensure that any progression in condition or development of chronic complications does not go unattended |
- stops driving and treat themselves immediately if hypoglycemia is identified or suspected
- does not drive until at least 40 minutes after successful treatment if glucose level is between 2.5 and 4.0 mmol/L
- report to the authority if begins insulin therapy

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Routine or more frequently at the discretion of the Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information from health care providers</td>
<td>Description of treatment</td>
</tr>
</tbody>
</table>

Rationale

Drivers with diabetes who are not treated with insulin or insulin secretagogues are at little or no risk for hypoglycemia. Because diabetes is a progressive condition, these drivers must remain under medical supervision and undergo a reassessment at the discretion of the authority.

Drivers who begin insulin therapy are required to report because of the significant increase in risk for hypoglycemia associated with insulin therapy. The requirement to report is intended to ensure that drivers on insulin therapy meet the more stringent driver fitness standards and conditions for driving.

Although there is some increased risk of hypoglycemia from the use of insulin secretagogues, the risk remains less than the risk from insulin therapy.

7.6.2 Type 1 or type 2 diabetes treated with insulin – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>they understand their diabetic condition and the close interrelationship between insulin and diet and exercise, and</td>
</tr>
<tr>
<td></td>
<td>Routinely follow their physician's instructions about diet, medication, glucose monitoring, and hypoglycemia prevention and management</td>
</tr>
<tr>
<td></td>
<td>conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>
| Conditions for maintaining licence | • Remains under regular medical supervision to ensure that any progression in their condition or development of chronic complications does not go unattended
• Stops driving immediately if hypoglycemia is identified or suspected
• Does not drive when glucose level is below 4.0 mmol/L
• Does not drive until at least 40 minutes after successful treatment of hypoglycemia, and blood glucose level has increased to at least 5.0 mmol/L
• When driving, tests blood glucose immediately before driving and approximately every 4 hours while driving, and have an available source of rapidly absorbable glucose |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• If blood glucose levels and treatment are not stable, reassess more frequently at the discretion of the Authority</td>
</tr>
</tbody>
</table>
| Information from health care providers | • Description of treatment
• Opinion of treating physician whether the driver understands their diabetic condition and the close interrelationship between insulin and diet and exercise |
| Rationale | Drivers with diabetes who are treated with insulin therapy are at risk for hypoglycemia. In addition to the conditions regarding how to avoid severe hypoglycemia while driving that apply to drivers treated with insulin secretagogues, there are additional conditions for checking and monitoring blood glucose. These conditions are based on guidelines published by the Diabetes Canada. |
Type 1 or type 2 diabetes treated with insulin – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial driver eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Has demonstrated good knowledge of the condition and its management and monitoring and assessment indicate effective blood glucose control</td>
</tr>
<tr>
<td></td>
<td>• Annual medical review</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• carries a blood glucose self-monitoring equipment and an available source of rapidly absorbable glucose</td>
<td></td>
</tr>
<tr>
<td>• Remains under regular medical supervision to ensure that any progression in their condition or development of chronic complications does not go unattended</td>
<td></td>
</tr>
<tr>
<td>• Stops driving immediately if hypoglycemia is identified or suspected</td>
<td></td>
</tr>
<tr>
<td>• Does not drive when glucose level is below 4.0 mmol/L</td>
<td></td>
</tr>
<tr>
<td>• Does not drive until at least 40 minutes after successful treatment of hypoglycemia and blood glucose level has increased to at least 5.0 mmol/L</td>
<td></td>
</tr>
<tr>
<td>• When driving, tests blood glucose immediately before driving and approximately every 4 hours while driving, and have an available source of rapidly absorbable glucose</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Annually</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Description of treatment</td>
<td></td>
</tr>
<tr>
<td>• Whether the driver has an initial certificate of competency in blood glucose measurement from a specialist in diabetic care (when required) or a treating physician</td>
<td></td>
</tr>
<tr>
<td>• Opinion of treating physician whether the driver’s work schedule is compatible with their insulin regimen</td>
<td></td>
</tr>
<tr>
<td>• Whether blood tests indicate uncontrolled diabetes</td>
<td></td>
</tr>
<tr>
<td>• Whether there has been a significant change in insulin therapy. If there has been a significant change in insulin therapy, whether</td>
<td></td>
</tr>
</tbody>
</table>
monitoring and assessment indicate a stable and effective blood glucose control.

- Whether there is evidence of inadequate self-monitoring of blood glucose or inadequate knowledge of the causes, symptoms and treatment of hypoglycemic reactions

<table>
<thead>
<tr>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial drivers who are treated with insulin are at increased risk of experiencing hypoglycemia while driving. This is due to both their high level of driving exposure and to the nature of the driving task, which may make it more difficult for them to manage their blood glucose. The standard is focused on ensuring that these drivers have stable blood glucose levels and that they understand their condition and are able to effectively monitor and manage their blood glucose.</td>
</tr>
</tbody>
</table>
7.6.4 Episode of severe hypoglycemia – Non-commercial drivers

Applies also to hypoglycemia while sleeping

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• No further episodes of severe hypoglycemia (or hypoglycemia while sleeping) within the past 6 months</td>
</tr>
<tr>
<td></td>
<td>• Earlier re-licensing can be considered if an appropriate specialist indicates that glycemic control has been re-established</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	• must test blood glucose immediately before driving and approximately every hour while driving
	• Does not drive until at least 40 minutes after successful treatment of hypoglycemia and blood glucose has increased to at least 5.0 mmol/L.
	• Must refrain from driving immediately, and notify their health-care provider as soon as possible

| Reassessment | • Reassess based on opinion of the treating physician or at the discretion of the Authority |

| Information from health care providers | • Date of the hypoglycemic episode |
| | • Opinion of treating physician whether stable glycemic control has been re-established |

| Rationale | Severe hypoglycemia indicates a lack of glycemic control and the potential for further hypoglycemic episodes. Once control is re-established and driving resumes, more stringent glucose monitoring conditions are required temporarily to mitigate the increased risk of hypoglycemia. |
7.6.5 Episode of hypoglycemia unawareness within past year – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• has been 3 months since the episode</td>
</tr>
<tr>
<td></td>
<td>• treating physician indicates glycemic awareness regained and have stable glycemic control</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	• must test blood glucose immediately before driving and approximately every hour while driving
	• Does not drive until at least 40 minutes after successful treatment of hypoglycemia and blood glucose has increased to at least 5.0 mmol/L.
	• Must refrain from driving immediately, and notify their health-care provider as soon as possible

| Reassessment | • Reassess based on opinion of the treating physician or at the discretion of the Authority |

Information from health care providers	• Date of the episode
	• Opinion of treating physician whether glycemic awareness has been regained
	• Opinion of treating physician whether the driver has stable glycemic control

| Rationale | Hypoglycemia unawareness greatly increases the risk for hypoglycemia while driving. This standard requires that glycemic awareness be re-established before driving resumes. Once awareness and glucose stability are re-established, more stringent glucose monitoring guidelines are required temporarily to mitigate the increased risk of hypoglycemia. |
Standard 6: Determining Driver Fitness in Canada

7.6.6 Persistent hypoglycemia unawareness – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td>• has been 3 months since the last episode of hypoglycemia</td>
<td></td>
</tr>
<tr>
<td>• treating physician indicated stable glycemic control and takes steps to ensure they do not become hypoglycemic while driving</td>
<td></td>
</tr>
<tr>
<td>• conditions for maintaining a licence are met</td>
<td></td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • must test blood glucose immediately before driving and approximately every hour while driving |
| • Does not drive until at least 40 minutes after successful treatment of hypoglycemia and blood glucose has increased to at least 5.0 mmol/L. |
| • Must refrain from driving immediately, and notify their health-care provider as soon as possible |

| Reassessment | • Reassess based on opinion of the treating physician or at the discretion of the Authority |

| Information from health care providers | • Date of the last episode |
| • Opinion of treating physician whether stable glycemic control has been re-established |
| • Opinion of treating physician whether driver is willing and able to take steps to ensure they do not become hypoglycemic while driving |

| Rationale | Persistent hypoglycemia unawareness presents the greatest risk for hypoglycemia while driving. The standard permits non-commercial drivers to continue to drive provided they are able to maintain stable blood glucose levels and follow more stringent glucose monitoring requirements. |
7.6.7 Episode of severe hypoglycemia – Commercial drivers

Applies also to hypoglycemia while sleeping

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• No further episodes of severe hypoglycemia (or hypoglycemia while sleeping) within the past 6 months</td>
</tr>
<tr>
<td></td>
<td>• Earlier re-licensing can be considered if an appropriate specialist indicates that glycemic control has been re-established</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• must test blood glucose immediately before driving and approximately every hour while driving</td>
</tr>
<tr>
<td></td>
<td>• Does not drive until at least 40 minutes after successful treatment of hypoglycemia and blood glucose has increased to at least 5.0 mmol/L.</td>
</tr>
<tr>
<td></td>
<td>• Must refrain from driving immediately, and notify their health-care provider as soon as possible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Reassess based on opinion of the treating physician or at the discretion of the Authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Date of the hypoglycemic episode</td>
</tr>
<tr>
<td></td>
<td>• Opinion of treating physician whether stable glycemic control has been re-established</td>
</tr>
<tr>
<td></td>
<td>• Statement from treating physician that driver has provided a blood glucose log of at least 4 readings per day for 30 days, in which less than 5% of the readings are below 4.0 mmol/L</td>
</tr>
</tbody>
</table>

| Rationale | Severe hypoglycemia indicates a lack of glycemic control and the potential for further hypoglycemic episodes. Once control is re-established and driving resumes, more stringent glucose monitoring conditions are required temporarily to mitigate the increased risk of hypoglycemia. |
7.6.8 Episode of hypoglycemia unawareness in the last year – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• has been 3 months since the episode</td>
</tr>
<tr>
<td></td>
<td>• treating physician indicates glycemic awareness regained, has stable glycemic control and authority determines are fit to drive</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>• must test blood glucose immediately before driving and approximately every hour while driving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Does not drive until at least 40 minutes after successful treatment of hypoglycemia and blood glucose has increased to at least 5.0 mmol/L.</td>
</tr>
<tr>
<td></td>
<td>• Must refrain from driving immediately, and notify their healthcare provider as soon as possible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>• Reassess based on opinion of the treating physician or at the discretion of the Authority</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Date of the episode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Statement from treating physician that driver has provided a blood glucose log of at least 4 readings per day for 30 days, in which less than 5% of the readings are below 4.0 mmol/L</td>
</tr>
<tr>
<td></td>
<td>• Opinion of treating physician whether glycemic awareness has been regained</td>
</tr>
<tr>
<td></td>
<td>• Opinion of treating physician whether the driver has stable glycemic control</td>
</tr>
</tbody>
</table>

| Rationale | Hypoglycemia unawareness greatly increases the risk for hypoglycemia while driving. This standard requires that glycemic awareness be re-established before driving resumes. Once awareness and glucose stability are re-established, more stringent glucose monitoring guidelines are required temporarily to mitigate the increased risk of hypoglycemia. |
7.6.9 *Persistent hypoglycemia unawareness – Commercial drivers*

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers not eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>N/A</td>
</tr>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>N/A</td>
</tr>
<tr>
<td>Rationale</td>
<td>Persistent hypoglycemia unawareness presents the greatest risk for hypoglycemia while driving. Given the increased driving exposure associated with commercial driving, individuals who have persistent hypoglycemia unawareness are not fit to drive.</td>
</tr>
</tbody>
</table>
7.6.10 Summary Table of Diabetes Conditions and Driver Medical Standards

<table>
<thead>
<tr>
<th>Type II</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Type I or Type II Insulin-Treated</td>
<td></td>
</tr>
<tr>
<td>Non-Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Severe Hypoglycemia Episode</td>
<td></td>
</tr>
<tr>
<td>Non-Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Episode of Hypoglycemic Unawareness</td>
<td></td>
</tr>
<tr>
<td>Non-Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Persistent Hypoglycemic Unawareness</td>
<td></td>
</tr>
<tr>
<td>Non-Commercial</td>
<td>Eligible for licence</td>
</tr>
<tr>
<td>Commercial</td>
<td>Ineligible to Drive</td>
</tr>
</tbody>
</table>

- **Type II**
 - **Non-Commercial**: Eligible for licence
 - **Commercial**: Eligible for licence

- **Type I or Type II Insulin-Treated**
 - **Non-Commercial**: Eligible for licence
 - **Commercial**: Eligible for licence

- **Severe Hypoglycemia Episode**
 - **Non-Commercial**: Eligible for licence
 - **Commercial**: Eligible for licence

- **Episode of Hypoglycemic Unawareness**
 - **Non-Commercial**: Eligible for licence
 - **Commercial**: Eligible for licence

- **Persistent Hypoglycemic Unawareness**
 - **Non-Commercial**: Eligible for licence
 - **Commercial**: Ineligible to Drive
Chapter 8: General debility and lack of stamina

8.1 About general debility and lack of stamina

General debility

General debility is a state of general weakness or feebleness that may be a result of one or more medical conditions that produce symptoms such as pain, fatigue, cachexia and physical disability, or deficits in attention, concentration, memory, development and/or learning.

Some of the medical conditions included in this part may be commonly associated with general debility (e.g. end stage renal disease), and in these cases this is noted in the medical condition chapter. However, general debility is more usually associated with multiple medical conditions or extreme old age. Medications used to treat various medical conditions may also produce effects that contribute to general debility.

Common medical conditions not included in this document that may result in general debility are:

- anorexia nervosa or other related eating disorders
- chronic fatigue syndrome
- malabsorption syndromes (e.g. cystic fibrosis, Crohn’s disease) and malnutrition
- AIDS
- chronic infections (e.g. TB, HIV)
- malignancies, and
- conditions resulting in chronic pain.
- Metabolic diseases such as: Thyroid Diseases, Pituitary Diseases and Adrenal Diseases.

Lack of stamina

Stamina is the physical or mental strength to resist fatigue and tiredness and maintain functional ability over time. Lack of stamina is not the same as general debility. While drivers with general debility do not have sufficient stamina to drive, drivers suffering from a lack of stamina may not be suffering from general debility.

Generally, concerns about stamina only arise in extreme old age or when a driver has a condition that results in a persistent impairment. For drivers with co-morbidities, stamina may be a particular concern.

Some of the medical conditions in this part may be commonly associated with a lack of stamina (e.g. congestive heart failure), and in these cases this is noted in the medical condition chapter.
8.2 Prevalence

No data are available on the prevalence of general debility or lack of stamina in Canada.

8.3 General debility, lack of stamina and adverse driving outcomes

No research is available on the relationship between general debility or a lack of stamina and driving outcomes.

8.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>General debility</td>
<td>Persistent impairment: Functional assessment</td>
<td>Cognitive and Motor</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Lack of stamina</td>
<td></td>
<td></td>
<td>Functional assessments</td>
</tr>
</tbody>
</table>

Both a lack of stamina and general debility may impair a driver’s motor and/or cognitive functions necessary for driving.

A driver suffering from a lack of stamina may experience:

- fatigue
- physical disability, and/or
- cognitive impairment such as loss of attention, concentration and memory.

A driver suffering from general debility may experience:

- pain
- fatigue/poor stamina
- cachexia - a condition marked by loss of appetite, weight loss, muscular wasting, and general mental and physical debilitation
- physical disability, and/or
- cognitive impairment such as loss of attention, concentration and memory.

8.5 Compensation

A driver cannot compensate for general debility or a lack of stamina that impairs the functions necessary for driving.
8.6 Guidelines for assessment

8.6.1 Frailty, weakness or general debility

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the results of a functional assessment indicate that the functions necessary for driving are not impaired</td>
</tr>
</tbody>
</table>

| **Conditions for maintaining licence** | None |

| **Reassessment** | • Routine or more frequently at the discretion of the Authority |

| **Information from health care providers** | • Description of any cognitive and/or motor impairments |
| | • Results of Functional Assessment |

| **Rationale** | Frailty, weakness or general debility may include one or more cognitive or motor impairments. Licensing decisions should be based on individual functional assessments. |
Chapter 9: Hearing loss

9.1 About hearing loss

Hearing loss is categorized as either conductive or sensorineural. Conductive hearing loss involves abnormalities in the external or middle ear, including the ear canal, eardrum or ossicles. A blockage or other structural problem interferes with how sound gets conducted through the ear, making sound levels seem lower. In many cases, conductive hearing loss can be corrected with medication or surgery.

Sensorineural hearing loss typically results from permanent damage to the inner ear (cochlea) or the auditory nerve. Typically, it is gradual, bilateral, and characterized by the loss of high-frequency hearing. Sensorineural hearing loss is permanent and often is helped with hearing aids. Profound deafness can be treated with cochlear implants.

Sensorineural hearing loss accounts for 90% of all hearing loss.

9.2 Prevalence

The 2003 Canadian Community Health Survey (CCHS) indicated that 3% of Canadians 12 years of age and older have some type of hearing difficulty. The prevalence of hearing loss increases with age. In the CCHS, 5% of 65 to 69 year-olds reported hearing problems, with the percentage increasing to 23% of those 80 and older. Hearing loss is more common in men than in women across every age group.

9.3 Hearing loss and adverse driving outcomes

The effects of hearing loss on the ability to safely operate a motor vehicle are not well established. Although the overall body of literature examining the relationship between hearing loss and driving is small, since the 1990’s there has been an increasing amount of research in this area. The results are equivocal. Some studies report an association between impairments in hearing and adverse driving outcomes while others have not found an association.

Although variability in methodology makes it difficult to draw conclusions across studies, results from studies indicate that, for the majority (70%) of study measures, no significant relationship was found between hearing loss and adverse driving outcomes (e.g. crashes, violations, convictions).
9.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing loss</td>
<td>Persistent impairment: Functional assessment</td>
<td>Sensory - Hearing</td>
<td>Audiometric assessment</td>
</tr>
</tbody>
</table>

The effect of hearing loss on functional ability to drive has not been established.

9.5 Compensation

Drivers with hearing loss may compensate for this impairment using auditory aids.

9.6 Guidelines for Assessment

9.6.1 Hearing loss – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>None</td>
</tr>
<tr>
<td>Rationale</td>
<td>There is insufficient evidence to support a minimum hearing requirement for non-commercial drivers.</td>
</tr>
</tbody>
</table>
9.6.2 Hearing loss – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Eligible for class 2 and 4 driver licence, and classes 1, 3 and 5 when transporting dangerous goods, if either:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Perceives a forced whispered voice at not less than 5 (1.5 metres) feet with or without the use of a hearing aid or,</td>
</tr>
<tr>
<td></td>
<td>• Hearing loss no greater than 40dB averaged at 500, 1000, and 2000 Hz in their better ear</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>• Wear hearing aid, if the driver must wear a hearing aid in order to meet the hearing standard</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Results of a recent auditory testing</td>
</tr>
</tbody>
</table>

Rationale

For Classes 5 and 6, hearing loss should not constitute a barrier to driving ability. While the ability to hear or communicate is of paramount importance for the operator of a passenger bus, ambulance or other emergency vehicles (i.e. Classes 2 and 4), there are a number of factors which suggest it is inappropriate to apply the same requirement to the operator of a Class 1 or 3 motor vehicle.

Consequently, it is suggested that the holder of a Class 2 or 4 driver licence and the operators of emergency vehicles be required to meet a hearing standard.

It is also recommended individuals who hold a Class 1, 3 or 5 licence and are engaged in the transportation of dangerous goods meet the medical requirements corresponding to Classes 2 and 4 as stated above.

While it is agreed that a degree of hearing would be beneficial for all motor vehicle operators, in the absence of empirical data, the totally deaf individual who is able to successfully complete the driving tests should be permitted to obtain or hold a Class 1, 3, 5 or 6 licence.

The US FMCSA whisper test is described as:

- For the whispered voice test, the individual should be stationed at least 5 feet from the examiner with the ear being tested turned toward the examiner.
- The other ear is covered.
- Using the breath which remains after a normal expiration, the examiner whispers words or random numbers such as 66, 18, 23, etc.
- The examiner should not use only sibilants (s-sounding test materials).
- The opposite ear should be tested in the same manner.
Chapter 10: Intracranial tumours

10.1 About intracranial tumours

Intracranial tumours are tumours that develop inside the cranium, the upper portion of the skull that protects the brain. Primary tumours are those which originate from within the cranium and metastatic tumours are those which result from cancers which spread (metastasize) from other parts of the body. Metastatic tumours are by far the more common type of intracranial tumour in adults, 10 times more common than primary tumours.

Primary tumours may be classified as either benign (non-cancerous) or malignant (cancerous). Malignant tumours are graded on a scale of 1 to 4, with grade 4 being the most severe, based on how abnormal they are compared to normal tissue and how quickly they are likely to grow and metastasize.

Typically, the treatment options for intracranial tumours are surgery, radiation and chemotherapy, alone or in combination, regardless of whether the tumour is primary or metastatic, benign or malignant. For primary tumours, the probability of successful treatment depends on a number of factors, including the type of tumour, size and location.

Treatment will rarely cure a metastatic tumour, and the goal of treatment is generally to reduce symptoms, increase length of survival and improve quality of life.

Impairments associated with intracranial tumours vary depending on the tumour type, location and rate of growth, and can affect cognitive, motor or sensory functions. Examples of possible impairments include:

- cognitive impairment
- epilepsy
- personality changes
- focal weakness, and
- sensory disturbances.

The presentation of impairments may be progressive or variable.

10.2 Prevalence

The overall incidence of intracranial tumours in the United States is between 5 and 14 per 100,000 people (all ages), with the peak incidence in those between 65 and 79 years of age. Canadian data are lacking.

10.3 Intracranial tumours and adverse driving outcomes

No studies on the effects of intracranial tumours on driving were found.
10.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial tumour</td>
<td>Persistent impairment: Functional assessment</td>
<td>Variable – cognitive, motor or sensory</td>
<td>Medical assessments, Functional assessment</td>
</tr>
<tr>
<td></td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>Variable – sudden impairment (epilepsy)</td>
<td>Medical assessments</td>
</tr>
</tbody>
</table>

An intracranial tumour may result in a persistent cognitive, motor or sensory impairment, or an episodic impairment (epilepsy), or both.

10.5 Compensation

Drivers who have experienced a persistent impairment of motor or sensory function may be able to compensate. An occupational therapist, driver rehabilitation specialist, driver examiner or other medical professional may recommend specific compensatory vehicle modifications or restrictions based on an individual functional assessment.

Some examples of compensatory mechanisms are shown in the following table.

<table>
<thead>
<tr>
<th>Motor impairment</th>
<th>Sensory (vision) impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Steering wheel spinner knob</td>
<td>• Scanning horizon more frequently</td>
</tr>
<tr>
<td>• Restriction to automatic transmission</td>
<td>• Turning head 90° to maximize area scanned</td>
</tr>
<tr>
<td>or power-assisted brakes</td>
<td>• Large left and right side mirrors</td>
</tr>
</tbody>
</table>
10.6 Guidelines for assessment

10.6.1 Intracranial tumour

If a driver has epilepsy as a result of an intracranial tumour, also see the standards in Chapter 17.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• movement and strength are sufficient to perform the functions necessary for driving</td>
</tr>
<tr>
<td></td>
<td>• cognitive and visual functions necessary for driving are not impaired</td>
</tr>
<tr>
<td></td>
<td>• any pain associated with the condition, and any treatment for the condition, do not impair the functional abilities necessary for driving</td>
</tr>
<tr>
<td></td>
<td>• where required, a road test or other functional assessment indicates that the driver is able to compensate for any loss of functional ability necessary for driving, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>Only drive vehicles that have the permitted modifications and devices required to compensate for functional impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>Routine</td>
</tr>
</tbody>
</table>

Information from health care providers

- Whether the driver suffers from epilepsy as a result of the tumour. See the standards under Chapter 17 if epilepsy is present.
- Opinion of treating physician on whether the driver has a loss of movement or strength that may affect functional ability to drive
- Opinion of treating physician on whether pain or treatment may adversely affect functional ability to drive
- Opinion of treating physician on whether the driver suffers from diplopia and/or a visual field deficit that may affect functional ability to drive. See the standards under Chapter 22 if the treating physician indicates that either of these conditions may be present.
- Results of cognitive assessment
- Where required, the results of a functional assessment

Rationale

The potential functional impairments associated with an intracranial tumour are variable.
Chapter 11: Musculoskeletal conditions

11.1 About musculoskeletal conditions

This chapter is concerned with diseases or injuries that have a persistent impact on the musculoskeletal system. Musculoskeletal refers to the system of muscles, tendons, ligaments, bones, joints, cartilage and other connective tissues. The musculoskeletal system is responsible for body movement and stability. Examples of chronic musculoskeletal conditions that may have a persistent impact on driving are:

- diseases of the joints, e.g. rheumatoid arthritis and osteoarthritis
- disabilities of the spine, e.g. degenerative disc disease or permanent injuries
- deformity, e.g. scoliosis, and
- loss of limb.

Some musculoskeletal conditions, or procedures to treat the conditions, may result in temporary impairment of the functions necessary for driving, including fractures, temporary braces and casts, hip and knee replacements, and various orthopedic surgeries. These are considered transient impairments and authorities do not assess drivers with transient impairments.

11.2 Prevalence

Statistics on the prevalence and incidence of musculoskeletal conditions in general are difficult to obtain because of the broadness of the category and the diversity of conditions within the category. Research suggests that musculoskeletal conditions are a leading cause of pain and physical disability. In Canada, the Ontario Health Survey (1994) found that musculoskeletal conditions are responsible for 54% of all long-term disability, 40% of all chronic conditions, and 24% of all restricted activity days. A study in the United States found that the leading causes of disability included back or spine problems, stiffness or deformity of limbs and arthritis.

Arthritis is an umbrella term referring to a group of more than 100 medical conditions. Two of the most common forms of arthritis are osteoarthritis (OA) and rheumatoid arthritis (RA). It is estimated that 9.6% of males and 18.0% of females 60 years of age and older worldwide have symptomatic OA.

RA also has a worldwide distribution with an estimated prevalence of 1 to 2%. Both the incidence and prevalence of RA increase with age and both are two to three times greater in women than in men.

11.3 Musculoskeletal conditions and adverse driving outcomes

Few studies have specifically examined the relationship between musculoskeletal conditions and impaired driving performance. As well, it is difficult to draw specific conclusions from this research because of differences in study design, outcome measures and the conditions studied, as well as limited measurement of the degree of impairment of the subjects.
Nonetheless, one broad conclusion that can be drawn is that many musculoskeletal conditions do appear to affect driving performance, often to a significant degree. In those studies that examined crash outcomes, the majority report elevated risk for crashes for those with musculoskeletal impairments. Two studies in particular (one a meta-analysis) identified that drivers with a musculoskeletal condition had crash rates that were 70% higher than those without musculoskeletal conditions.

Another important consideration for drivers with musculoskeletal conditions who are treated with non-steroidal anti-inflammatory drugs (NSAIDS) and/or narcotics is the effect of these drugs on driving performance. The effect of the use of NSAIDS and narcotics is discussed in Chapter 15, Psychotropic Drugs.

11.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach(^{14})</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of limb</td>
<td>Persistent impairment: Functional assessment</td>
<td>Motor</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Diseases of the joints</td>
<td></td>
<td></td>
<td>Functional assessment</td>
</tr>
<tr>
<td>Disabilties of the spine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drivers operating motor vehicles of any class must be able to carry out many complex muscular movements swiftly, accurately and repeatedly in order to control a vehicle properly. Truck and bus drivers must also have good muscular strength and functional range of motion in both their arms and legs in order to handle these heavier vehicles.

Musculoskeletal conditions may cause a persistent impairment of motor functions necessary for driving. The specific impact on functional ability varies by condition and type of impairment. Functional abilities that may be affected include:

- muscular strength
- range of motion
- flexion and extension of upper and lower extremities
- joint mobility, and
- trunk and neck mobility.

\(^{14}\) See Part 1 for a discussion of the use of functional assessments for driver licensing decisions.
Osteoarthritis has a considerable effect on functional ability, with the extent of the
disability associated with the location and severity of the disease. For example, the risk
for disability (defined as needing help walking or climbing stairs) attributable to OA of
the knee is as great as that attributable to cardiovascular disease, and is greater than
that due to any other medical condition in the aged population.

Functional disability is the major consequence of rheumatoid arthritis. Drivers with RA
often experience a substantial loss of mobility due to pain and joint destruction. In the
few studies that have examined the relationship between RA and driving performance,
25% - 50% of individuals with RA reported difficulties with aspects of the driving task
such as steering, cornering, reversing, head turns and shoulder checks.

11.5 Compensation

Drivers with musculoskeletal conditions may be able to compensate for functional
impairment through strategies and/or vehicle modifications.

Strategies

For loss of limb, a driver may compensate through the use of a prosthetic device when
driving. Other strategies that do not require vehicle modifications may also be used to
compensate, for example, rotating the upper body in order to check side view mirrors if
the driver’s neck lacks sufficient mobility. The effectiveness of individual strategies may
be determined through a road test.

Vehicle modifications

Drivers with musculoskeletal conditions may be able to compensate for a functional
impairment by driving a vehicle that has been modified to address their impairment.
Compensatory vehicle modifications can include modifications to driving controls (e.g.
hand controlled throttle and brake) or the use of additional mirrors.

An occupational therapist, driver rehabilitation specialist, driver examiner or medical
professional may recommend specific compensatory vehicle modifications based on an
individual functional assessment. They are familiar with the full range of possible
vehicle modifications and what is appropriate for the type of musculoskeletal condition.
Listed below are examples of some possible vehicle modifications.

<table>
<thead>
<tr>
<th>Musculoskeletal condition</th>
<th>Possible vehicle modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some degree of loss of movement of the head and neck</td>
<td>Left and right outside mirrors</td>
</tr>
<tr>
<td></td>
<td>Rear view cameras</td>
</tr>
<tr>
<td>Missing lower limb</td>
<td>Hand controls</td>
</tr>
<tr>
<td></td>
<td>Left foot accelerator</td>
</tr>
<tr>
<td>Amputation or deformity of either arm</td>
<td>Power assisted steering</td>
</tr>
<tr>
<td></td>
<td>Mechanical devices to permit all hand controls to be</td>
</tr>
<tr>
<td></td>
<td>operated by the normal hand</td>
</tr>
</tbody>
</table>
There is little empirical research that considers the relationship between vehicle modifications and adverse driving outcomes. The effectiveness of individual vehicle modifications may be determined through a road test.

11.6 Guidelines for assessment

11.6.1 Loss of upper or lower extremities

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td>• a road test indicates ability to compensate for any loss of functional ability required for driving, and</td>
<td></td>
</tr>
<tr>
<td>• the conditions for maintaining a licence are met</td>
<td></td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>• Only drive vehicles that have the permitted modifications and devices required to compensate for functional impairment</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• If the loss of limb is due to a progressive medical condition, reassess as per the standards for that condition</td>
</tr>
<tr>
<td></td>
<td>• Otherwise, routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Results of a road test in a vehicle with the permitted modifications or devices required</td>
</tr>
<tr>
<td></td>
<td>• Health professional’s opinion as to whether the driver has insight into the impact their loss of limb may have on driving</td>
</tr>
<tr>
<td>Rationale</td>
<td>The impact of a loss of limb on fitness to drive is variable and must be determined by an individual functional assessment.</td>
</tr>
</tbody>
</table>
11.6.2 Chronic musculoskeletal condition

Chronic musculoskeletal conditions include diseases of the joints, disabilities of the spine and deformity.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the driver retains sufficient movement and strength to perform the functions necessary for driving</td>
</tr>
<tr>
<td></td>
<td>• pain associated with the condition, or the drugs used to treat the condition, do not adversely affect ability to drive safely</td>
</tr>
<tr>
<td></td>
<td>• where required, a road test or other functional assessment indicates ability to compensate for any loss of functional ability required for driving, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	Only drive vehicles that have the permitted modifications and devices required to compensate for any functional impairment
Reassessment	Routine
Information from health care providers	Opinion of treating physician on whether the driver has a loss of range of motion or strength that may affect functional ability to drive
	Opinion of treating physician on whether pain or drugs may adversely affect functional ability to drive
	Where required, the results of a functional assessment
	Opinion of treating physicians as to whether the driver has insight into the impact their condition may have on driving
	History of compliance with prescribed treatment regime
	If known or applicable, whether the driver is compliant with any current conditions of licence related to their condition

| **Rationale** | The impact of a chronic musculoskeletal condition on fitness to drive is variable and must be determined by an individual functional assessment. |
Chapter 12: Neurological disorders

12.1 About neurological disorders

Neurological disorders can affect the brain, spinal cord, nerves and muscles. They can affect an individual’s ability to think, see, communicate, move, and sense and coordinate movements. While any number of conditions fall within the category of neurological disorders, this chapter focuses on three common disorders: multiple sclerosis, Parkinson’s disease and cerebral palsy.

Multiple sclerosis

Multiple sclerosis (MS) is believed to be an autoimmune disorder in which the immune system attacks specific structures of the central nervous system (brain and spinal cord), resulting in inflammation, demyelination and axonal damage. Myelin is an essential insulation sheath of the nerve processes (axons). If it is damaged, signal transmission is slowed. Demyelination can ultimately result in permanent axonal damage in the form of scars and is called gliosis.

MS has an unpredictable and chronic course, leading to numerous physical and cognitive impairments. The cause is unknown. There are four clinical types of MS:

- Relapsing – Remitting (RRMS)
- Secondary Progressive (SPMS)
- Primary Progressive (PPMS), and
- Progressive Relapsing (PRMS).

Relapsing – Remitting (RRMS)

It is estimated that 55% of individuals with MS have RRMS. It is characterized by unpredictable attacks (relapses) followed by periods of months to years with no new clinical signs of disease activity (remissions). Impairments suffered during relapses may either resolve or become permanent. Approximately 10% of those with RRMS have “benign MS,” where impairments usually completely resolve between relapses and no disability is present after 10 years of disease onset. The longer a person has MS, the greater the probability that the relapses will not completely resolve and they will experience increasing disability.

Parkinson’s disease

Parkinson’s disease (PD) belongs to a group of conditions called motor system or movement disorders, which result from the slowly progressive loss of dopamine-producing brain cells. The lack of dopamine, a neurotransmitter, interferes with the transmission of messages from the brain to nerve cells that control muscle movement and coordination. It can result in motor impairment (tremor or rigidity), and in later stages, in cognitive or autonomic dysfunction. PD is chronic and progressive, and while...
the specific cause is unknown, it is believed that both genetic and environmental factors
contribute to the development of the disease.

Cerebral palsy
Cerebral palsy refers to any one of a number of neurological disorders that appear in
infancy or early childhood and are the result of damage to, or impaired development of,
the motor centres of the brain. It is a non-progressive disorder that permanently affects
body movement and muscle coordination.

12.2 Prevalence

Multiple sclerosis
The prevalence of MS in Canada is among the highest in the world, with studies
reporting prevalence rates from 55 to 240 per 100,000. A recent study using data from
the 2001 Canadian Community Health Survey reported an overall weighted estimate of
240 per 100,000 adults (0.24%).

MS is twice as likely to affect women as men, with the highest incidence occurring in
individuals in their late 30s, and the highest prevalence among those in their 40s and
50s.

Parkinson’s disease
Estimated prevalence rates for Parkinson’s disease vary widely depending on the
population sampled and the methodology used. Age-adjusted prevalence rates in
Canada have been reported as 125 per 100,000 (1.25%).

Cerebral palsy
The prevalence of cerebral palsy (CP) in Canadian infants is approximately 2 in 1000,
with over 50,000 Canadians currently living with the disorder. The number of
individuals with CP has risen slightly over the past 30 years due to higher survival rates
of affected newborns as care and treatment have improved.

12.3 Neurological disorders and adverse driving outcomes

Multiple sclerosis
The research on MS and driving is limited. The results of this research indicate that
driving performance may be impaired by functional deficits, including cognitive
impairment, caused by MS.

15 Weighted estimate means that the results from the data are adjusted (weighted) from the sampling design using national
population data.
Parkinson’s disease

There is a small but consistent body of research indicating that functional deficits associated with Parkinson’s disease or its treatment may impair driving performance.

Cerebral palsy

There has been no research on the effects of cerebral palsy and driving outcomes.

12.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple sclerosis</td>
<td>Persistent impairment: Functional assessment</td>
<td>Variable – cognitive, motor or sensory</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebral palsy</td>
<td></td>
<td></td>
<td>Functional assessment</td>
</tr>
</tbody>
</table>

Multiple sclerosis

MS can affect motor, visual and cognitive functioning. The major symptoms associated with MS that may affect driving are:

- ataxia (wobbliness, incoordination and unsteadiness)
- impaired proprioception (ability to perceive the body’s position in space)
- spasticity (involuntary muscle spasms)
- muscle weakness
- fatigue
- chronic pain
- vision problems, and
- cognitive impairment.

Vision problems are common, affecting up to 80% of individuals with MS at some point. Visual symptoms associated with MS include:

- nystagmus (rapid, involuntary eye movement)
- diplopia (double vision)
- blurred vision
- scotoma (abnormal blind spot), and
- diminished contrast sensitivity.
Cognitive impairment, particularly associated with information processing speed, is also common, affecting between 45% and 65% of those with the disease.

Medications used to treat MS that may affect driving include:

- corticosteroids
- NSAIDS
- antiepileptics
- antidepressants
- antispasticity drugs, and
- opioids.

See Chapter 15, Psychotropic Drugs, for more information on these medications.

Parkinson’s disease

PD can affect motor, visual and cognitive functioning. Common motor symptoms include:

- tremor
- rigidity
- bradykinesia/akinesia (slowness or absence of movement/rapid repetitive movements), and
- postural instability.

Visual impairments such as contrast sensitivity, diplopia (double vision) and impaired eye movement are sometimes seen in PD and related movement disorders. Cognitive symptoms may include:

- psychiatric conditions such as depression, impulse control disorders and psychosis
- sleep disturbances
- psychomotor slowing (slow response and reaction time)
- cognitive impairment, and
- dementia.

In addition to the symptoms noted above, fatigue and sleep disturbances are common in those with PD.

The symptoms of PD are often treated with medications including levodopa, dopamine agonists and MAO-B inhibitors. These medications can cause side effects including sleepiness, sleep attacks (sudden, overwhelming sleepiness with little or no warning signs) and visual hallucinations, which may affect driving.

A further consideration for driving is the fluctuation in the effects of medication. Individuals with advanced PD may experience periods of reduced symptom control (wearing off) near the time of their next dose of medication.
Cerebral palsy

CP can affect motor, visual, and cognitive functioning. The primary effects of CP are:

- ataxia (wobbliness, incoordination and unsteadiness)
- weakness and spasticity (involuntary muscle spasms), and
- altered muscle tone that is either too stiff or too floppy.

CP can also cause a loss of visual acuity or slowed visual tracking, as well as cognitive impairments such as impaired judgment and slow processing or reaction times.

12.5 Compensation

Drivers who have experienced a persistent impairment of motor or sensory function may be able to compensate. An occupational therapist, driver rehabilitation specialist, driver examiner or other medical professional may recommend specific compensatory vehicle modifications or restrictions based on an individual functional assessment.

Some examples of compensatory mechanisms are shown in the following table.

<table>
<thead>
<tr>
<th>Motor impairment</th>
<th>Sensory (vision) impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Steering wheel spinner knob</td>
<td>• Scanning horizon more frequently</td>
</tr>
<tr>
<td>• Restriction to automatic transmission</td>
<td>• Turning head 90° to maximize area scanned</td>
</tr>
<tr>
<td>or power-assisted brakes</td>
<td>• Large left and right side mirrors</td>
</tr>
</tbody>
</table>
12.6 Guidelines for assessment

12.6.1 Neurological disorder

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• range of motion, strength and coordination are sufficient to perform the functions necessary for driving</td>
</tr>
<tr>
<td></td>
<td>• cognitive functions necessary for driving are not impaired</td>
</tr>
<tr>
<td></td>
<td>• any pain associated with the condition, and any drugs used to treat the condition, do not impair the functional abilities necessary for driving</td>
</tr>
<tr>
<td></td>
<td>• where required, a road test or other functional assessment indicates that the driver is able to compensate for any loss of functional ability necessary for driving, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Only drive vehicles that have the permitted modifications and devices required to compensate for functional impairment |

| Reassessment | • Reassess a minimum of every 5 years if the disorder is progressive (e.g. MS or PD) |
| | • Routine if the disorder is not progressive (e.g. CP) |

Information from health care providers	• Opinion of treating physician on whether the driver has a loss of range of motion, strength or coordination that may affect functional ability to drive
	• Opinion of treating physician on whether pain or drugs may adversely affect functional ability to drive
	• Where required, the results of cognitive assessment
	• Where required, the results of a functional assessment

| Rationale | The potential functional impairments associated with neurological disorders are variable. |
Chapter 13: Peripheral vascular diseases

13.1 About peripheral vascular diseases

Overview

The term peripheral vascular diseases (PVDs) refers to circulatory disorders involving any of the blood vessels outside the heart, e.g. arteries, veins and lymphatics of the peripheral vasculature. The four subcategories of PVDs that have the greatest relevance for driving are:

- peripheral arterial disease
- aneurysms
- dissections, and
- deep vein thrombosis.

Peripheral arterial disease

Peripheral arterial disease (PAD) is characterized by partial or complete failure of the arterial system to deliver oxygenated blood to peripheral tissue. Atherosclerosis is the primary underlying cause of PAD. Other causes include thrombembolic, inflammatory or aneurismal disease. Although PAD can affect both upper and lower extremities, lower extremity involvement is more common. A large majority (70% to 80%) of individuals with PAD are asymptomatic. For those individuals who are symptomatic, symptoms can progress from intermittent claudication (pain while walking) to rest/nocturnal pain, to necrosis/gangrene. Only 1% to 2%, however, progress to limb amputation within 5 years of the original diagnosis.

Aneurysms

An aneurysm is defined as a localized abnormal dilation of an artery by 50% above the normal size. Although an aneurysm can form on any blood vessel, abdominal aortic aneurysms (AAA) are most common, with 90% occurring below the renal arteries. Others include those occurring in the thoracic aorta (ascending 5%; aortic arch 5%; descending 13%), those in the combined thoracic and abdominal aorta (14%) and iliac aneurysms (isolated 1%; combined abdominal and iliac 13%).

Aortic dissection

Aortic dissection is a different disease to aortic aneurysm. Most dissections are in apparently normal aortas, are sudden and often present with collapse. Apart from some congenital conditions which predispose to dissections, e.g. Marfan’s, there is no way to predict an aortic dissection.
Deep vein thrombosis

Deep vein thrombosis (DVT) occurs when a thrombus (blood clot) forms within a deep vein, most commonly in the calf. Three main factors (known as Virchow's triad) can contribute to deep vein thrombosis: injury to the vein's lining, an increased tendency for blood to clot, and slowing of blood flow.

13.2 Prevalence

Peripheral arterial disease

Estimates of the prevalence of PAD depend on populations studied and study methodology. The general prevalence rate is reported to be 10%. However, because most individuals remain asymptomatic, the true overall prevalence rate is likely to be considerably higher. The prevalence of PAD increases with age and with prolonged exposure to smoking, hypertension and diabetes.

Recent studies indicate that PAD affects approximately 20% of adults 55 years of age and older and an estimated 27 million persons in North America and Europe. Intermittent claudication is the most common symptom associated with PAD. The prevalence of intermittent claudication increases dramatically with age. The incidence in the general population is less than 1% of those under the age of 55, and increases to 5% for those 55 to 74 years of age. At younger ages, the prevalence rate is almost twice as high for males as for females but, at the older ages, the difference between males and females is reduced. Risk factors for lower extremity PAD are:

- age less than 50 years, with diabetes and one other atherosclerosis risk factor (smoking, dyslipidemia, hypertension or hyperhomocysteinemia)
- age 50 to 69 years and history of smoking or diabetes
- age 70 years and older
- leg symptoms with exertion (suggestive of claudication) or ischemic rest pain
- abnormal lower extremity pulse examination, and
- known atherosclerotic coronary, carotid or renal artery disease.

Abdominal aortic aneurysms

Based on results from a population-based study completed in 2001, the prevalence of abdominal aortic aneurysms is approximately 9% for males and 2.2% for females. Prevalence increases with age and is higher in close family relatives of those affected. Prevalence also is higher in individuals with cardiovascular risk factors such as cigarette smoking, hypertension and hypercholesterolemia.

Deep vein thrombosis

The prevalence of DVT is estimated to be < 0.005% in individuals less than 15 years of age, and increases to approximately 0.5% for individuals 80 years of age and older. Approximately one-third of patients with symptomatic DVT will develop a pulmonary
embolism, which is the obstruction of the pulmonary artery, or a branch of it leading to the lungs, by a blood clot.

13.3 Peripheral vascular diseases and adverse driving outcomes

There are no studies that consider a relationship between peripheral vascular diseases and risk of crash.

13.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral arterial disease – severe claudication</td>
<td>Persistent impairment: Functional assessment</td>
<td>Sensorimotor</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor</td>
<td>Functional assessment</td>
</tr>
<tr>
<td>Abdominal aortic aneurysm</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>All – sudden incapacitation</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Aortic dissection</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>All – sudden incapacitation</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>DVT - may result in pulmonary embolism</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>All – sudden incapacitation</td>
<td>Medical assessments</td>
</tr>
</tbody>
</table>

Peripheral arterial disease

For drivers with peripheral arterial disease, the chronic outcomes of the disease will rarely affect driving ability. The symptoms of lower extremity PAD such as coldness or numbness in the foot or toes and, in the later stages, pain while the extremity is at rest, may affect the sensory and motor functions required for driving.

In general, the degree of impact will be determined by disease severity. For example, drivers who are asymptomatic or have mild to moderate claudication are unlikely to have symptoms that would affect driving. Drivers whose disease has progressed to the severe claudication stage or higher may have functional impairment sufficient to interfere with the lower extremity demands of operating a motor vehicle (e.g. awareness of foot placement, pedal pressure, motor strength, etc.).
Abdominal aortic aneurysm and aortic dissection

For drivers with an abdominal aortic aneurysm, acute complications may affect driving ability. The primary concern with an abdominal aortic aneurysm is the risk of rupture. The majority of aneurysms are asymptomatic and research suggests that there are few or no symptoms prior to rupture. There is limited data on the immediate functional outcomes of rupture (e.g. loss of consciousness). In the absence of firm data, it is assumed that most drivers experiencing a rupture lose consciousness almost immediately. As with AAA, the primary concern for a driver with an aortic dissection is the risk of rupture.

Size and rate of expansion of abdominal aortic aneurysms and aortic dissections are determined by sequential CT or Ultrasound imaging. Only the anterior-posterior or transverse diameter is predictive of rupture; the length of the aneurysm has no relation to rupture.

Deep vein thrombosis

For drivers with deep vein thrombosis (DVT), acute complications may affect driving ability. The primary concern with DVT is the risk of sudden incapacitation due to a pulmonary embolism.

13.5 Compensation

Drivers are not able to compensate for the effects of an AAA, aortic dissection or DVT.

Drivers with an amputation resulting from PAD may be able to compensate for functional impairment through strategies and/or vehicle modifications. For example:

- for loss of limb, a driver may compensate through the use of a prosthetic device when driving
- drivers with PAD may be able to compensate for a functional impairment by driving a vehicle that has been modified to address their impairment. Compensatory vehicle modifications can include modifications to driving controls (e.g. hand controlled throttle and brake).

An occupational therapist, driver rehabilitation specialist, driver examiner or other medical professional may recommend specific compensatory vehicle modifications based on an individual functional assessment.
13.6 Guidelines for assessment

13.6.1 Peripheral arterial disease

If a driver has lost a limb due to peripheral arterial disease, also see standard 11.6.1.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the peripheral arterial disease is successfully treated</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | None |

| Reassessment | • Routine or more frequently at the discretion of the authority |

Information from health care providers	• Opinion of treating physician on whether there is severe claudication or foot and leg symptoms that may impair functional ability to drive
	• Where required, the results of a functional assessment
	• Opinion of the treating physician regarding whether the driver has insight into the impact their medical condition may have on driving
	• Whether the driver is compliant with their current treatment regime

| Rationale | Where peripheral arterial disease results in a functional impairment, the impact of the impairment on driving should be determined by an individual functional assessment. |
13.6.2 Abdominal aortic aneurysm or medically treated aortic dissection – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the aneurysm or dissection is not at the stage of imminent rupture as determined by size, location or recent change, and</td>
</tr>
<tr>
<td></td>
<td>• for men, the diameter of the aneurysm or dissection is < 6.5 cm and the conditions for maintaining a licence are met, or</td>
</tr>
<tr>
<td></td>
<td>• for women, the diameter of the aneurysm or dissection is < 6 cm and the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Regular review by a physician |

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Reassessment periods depend on the size of the AAA. Suggested frequencies are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• If the diameter is over 5 cm, reassess annually</td>
</tr>
<tr>
<td></td>
<td>• If the diameter is between 4 and 5 cm, reassess every 2 years</td>
</tr>
<tr>
<td></td>
<td>• If the diameter is under 4 cm, reassess every 5 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Size of aneurysm or dissection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Whether condition is regularly reviewed</td>
</tr>
</tbody>
</table>

| Rationale | The primary concern with AAA and aortic dissection is the risk of rupture. The risk of rupture increases with the size of the aneurysm. The size threshold for non-commercial drivers has been set at just over the point at which surgery to repair the aneurysm or dissection is generally considered advisable given the risk of rupture. Aneurysms less than 5 cm in diameter have an annual incidence of rupture of 4.1%, which increases to 6.6% in aneurysms between 5 and 5.7 cm. Aneurysms larger than 7 cm in diameter have 19 percent per year incidence of rupture. This means that most patients (75%) with this size of aneurysm will have a rupture within 5 years. |
13.6.3 Abdominal aortic aneurysm or medically treated aortic dissection – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the aneurysm or dissection is not at the stage of imminent rupture as determined by size, location or recent change, and</td>
</tr>
<tr>
<td></td>
<td>• for men, the diameter of the aneurysm or dissection is < 6 cm and the conditions for maintaining a licence are met, or</td>
</tr>
<tr>
<td></td>
<td>• for women, the diameter of the aneurysm or dissection is < 5.5 cm, and the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Regular review by a physician |

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Reassessment periods depend on the size of the AAA. Suggested frequencies are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• If the diameter is over 4 cm, reassess annually</td>
</tr>
<tr>
<td></td>
<td>• If the diameter is between 3 and 4 cm, reassess every 2 years</td>
</tr>
<tr>
<td></td>
<td>• If the diameter is under 3 cm, reassess every 3 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Size of aneurysm or dissection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Whether condition is regularly reviewed</td>
</tr>
</tbody>
</table>

| Rationale | The primary concern with AAA and aortic dissection is the risk of rupture. The risk of rupture increases with the size of the aneurysm. The size threshold for commercial drivers has been set at the point at which surgery to repair the aneurysm or dissection is generally considered advisable given the risk of rupture. This threshold is lower than the threshold for non-commercial drivers to reflect the additional risk presented by the increased driving exposure for commercial drivers. Aneurysms less than 5 cm in diameter have an annual incidence of rupture of 4.1%, which increases to 6.6% in aneurysms between 5 and 5.7 cm. Aneurysms larger than 7 cm in diameter have 19 percent per year incidence of rupture. This means that most patients (75%) with this size of aneurysm will have a rupture within 5 years. |

13.6.4 Surgically repaired abdominal aortic aneurysm or surgically treated aortic dissection

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the abdominal aortic aneurysm has been surgically repaired, or</td>
</tr>
<tr>
<td></td>
<td>• the aortic dissection has been surgically treated, and</td>
</tr>
<tr>
<td></td>
<td>• the treating physician supports a return to driving</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine</td>
</tr>
</tbody>
</table>

| Information from health care providers | • Opinion of the treating physician whether the surgery was successful in repairing the aneurysm or treating the dissection |

| Rationale | The primary concern with AAA and aortic dissection is the risk of rupture. Successful surgery to repair an aneurysm or dissection will significantly reduce the risk of rupture. Surgical repair is considered where an aneurysm is greater than 5.5 cm. A recent study suggests that women’s aneurysms rupture at smaller sizes, leading to the conclusion that the 5.5 cm threshold for surgical repair is likely too large for women and 5 cm has been suggested as the appropriate level. |
13.6.5 Deep vein thrombosis

| **STANDARD** | All drivers eligible for a licence if
| | • treated with an anticoagulant, and
	• treating physician states that the treatment is effective
Conditions for maintaining licence	None
Reassessment	• Routine
Information from health care providers	• Whether the driver is being treated with an anticoagulant
	• Treating physician’s opinion that the DVT has been successfully treated
	• Whether the driver has insight into the impact their medical condition may have on driving
	• Whether the driver is compliant with their current treatment regime
Rationale	The primary concern with DVT is the risk of sudden incapacitation due to a pulmonary embolism
Chapter 14: Psychiatric disorders

14.1 About psychiatric disorders

The Diagnostic and Statistical Manual of Mental Disorders (DSM-5)16, published by the American Psychiatric Association, contains a standard classification system of psychiatric disorders for health care professionals in the United States and Canada. It classified psychiatric disorders into diagnostic categories. A previous edition (APA, 200017) utilized five axes, but that multi-axial system was removed from the most recent edition.

Delirium, dementia, and other cognitive disorders

The effects of delirium, dementia and other cognitive disorders on driving are covered in Chapter 6, ‘Cognitive Impairment including Dementia’. It is worth noting that the DSM-5 has relabeled dementia as “Major Neurocognitive Disorder”, and more subtypes (e.g. Lewy Body dementia) are described, organized by the cause, time course, domains affected, and associated symptoms. The DSM-5 retains the term dementia as an alternative to Major Neurocognitive Disorder.

Substance-related disorders

Substance-use disorders refer to the taking of a drug of abuse (including alcohol), despite significant substance-related problems, including medical (e.g. liver disease), physiological (e.g. tolerance and withdrawal), psychological (e.g. cravings), and social (e.g. negative impact on work, school, or home life). Substance-induced disorders refer to a category of apparent behavioral disturbance presumably related to ingestion of a substance (e.g. intoxication or withdrawal), or mental disorder (e.g. substance/medication-induced depressive disorder). Substances include alcohol, amphetamines, cannabis, cocaine, hallucinogens, sedatives, hypnotics and anxiolytics. Alcohol and illicit drug use disorders are not considered in this document. The effects of drugs commonly prescribed for medical conditions are addressed in Chapter 15, Drugs, alcohol and Driving.

Depressive disorders – Major Depressive Disorder, or Persistent Depressive Disorder (Dysthymia)

Major Depressive Disorder is characterized by one or more episodes of depressed mood or loss of interest in usual activities, as well as four additional symptoms of depression, with the episodes lasting for two or more weeks. Additional symptoms of depression include:

- Change in appetite
- Sleep disturbances
- Restlessness or being slowed down
- Decreased energy or fatigue
- Feelings of worthlessness or excessive guilt,
- Suicidal thoughts, and
- Poor concentration or difficulty making decisions.

Persistent depressive disorder (dysthymia) refers to a condition in which mood is persistently depressed for at least 2 years, along with at least two other symptoms such as low self-esteem, hopelessness, appetite or sleep changes, fatigue, difficulty concentrating or making decisions.

Other depressive disorders include:
- Disruptive Mood Dysregulation Disorder
 o a diagnosis characterized by severe and recurrent verbal or physical temper outbursts.
 o Generally, this is a diagnosis made in childhood, and “should not be made for the first time after age 18 years”, but is included here since it may persist into adulthood.
- Premenstrual Dysphoric Disorder
 o Characterized by symptoms such as mood instability, irritability, depressed mood, or anxiety occurring in conjunction with the majority of menstrual cycles.
- Depressive disorders induced by substances/medications or medical conditions

Bipolar I Disorder is characterized by one or more manic episodes, with or without a history of major depressive episodes. Bipolar II Disorder is similar, but instead of manic episodes, major depressive episodes alternate with hypomanic episodes. Hypomanic episodes are different from manic episodes, as they are of shorter duration, and are not associated with significant impairment in functioning, psychosis or a need for hospitalization.

Cyclothymia is similar to Bipolar II Disorder except that symptoms of depression have not met full criteria for a major depressive episode.
Other disorders in the bipolar spectrum are those felt to be due to drugs, substances or other medical conditions.

Anxiety disorders
There are a number of anxiety disorders classified in the DSM-5, including:

- Generalized Anxiety Disorder
- Specific phobias
- Social Phobia
- Panic Disorder.

Symptoms include intense and prolonged feelings of fear or distress that occur out of proportion to the actual threat or danger. The feelings of distress also must be sufficient to interfere with normal daily functioning.

Obsessive compulsive disorder, acute stress disorder, and post-traumatic stress disorder are considered in DSM-5 in separate categories from Anxiety Disorders, although it is acknowledged that anxiety is a common feature of these as well.

Obsessive Compulsive Disorder is characterized by recurrent obsessions (“recurrent and persistent thoughts, urges, or images that are experienced as intrusive and unwanted”) and/or compulsions (“repetitive behaviors or mental acts that an individual feels driven to perform…”).

Acute Stress Disorder and Posttraumatic Stress Disorder (PTSD) refer to the development of symptoms after exposure to a traumatic event. Symptoms include intrusive memories, avoidance of reminders of the trauma, alterations in mood, memory or arousal. The duration of Acute Stress Disorder is up to one month after the trauma, and the duration of PTSD is more than one month after the trauma.

Attention-Deficit/Hyperactivity Disorder
Attention-Deficit/Hyperactivity Disorder (ADHD) is characterized by inappropriate degrees of inattention, impulsivity and hyperactivity that begin in childhood. ADHD is one of the most common neurobehavioral disorders of childhood and can persist through adolescence and into adulthood.

Although many individuals with ADHD show symptoms of both inattention and hyperactivity-impulsivity, there may be a predominance of either inattention or hyperactivity-impulsivity. This variability of presentation is reflected in the three major classifications of the disorder:

- Combined Type (exhibiting both inattention and hyperactivity-impulsivity)
- Predominately Inattentive Type, and
- Predominately Hyperactivity-Impulsivity Type.
The symptoms of hyperactivity and impulsivity tend to diminish over time so that many adults will present with primary symptoms of inattention only.

Schizophrenia

The effects of Schizophrenia on the individual can be profound. Common symptoms include delusions and hallucinations, thought disorders, lack of motivation and social withdrawal. The symptoms of schizophrenia are generally divided into three broad categories:

- Positive or “psychotic” symptoms are characterized by delusions (fixed false beliefs), or hallucinations (“perception-like experiences that occur without an external stimulus”).
- Disorganised, illogical or bizarre thoughts, speech or behaviours.
- Negative symptoms are typically characterized by diminished emotional expression or a decrease in motivation and initiation of activities.

The onset of schizophrenia can occur at any age, but most typically appears in early adulthood. Many individuals with schizophrenia have recurring acute positive psychotic symptoms (delusions or hallucinations), or disorganization throughout their life, which are typically separated by intervening periods in which they usually experience residual or negative symptoms.

Personality disorders

There are a number of personality disorders identified in the DSM-5, including:

- Borderline Personality Disorder
- Schizotypal Personality Disorder
- Anti-social Personality Disorder, and
- Narcissistic Personality Disorder.

Onset typically occurs during adolescence or in early adulthood. The disorder affects thought, emotion, interpersonal relationships and impulse control. The disorders are characterized by “an enduring pattern of inner experience and behavior that deviates markedly from the expectations of the individual’s culture, is pervasive and inflexible, (and)...is stable over time...”

Intellectual Disability (Intellectual Developmental Disorder)

The DSM-5 defines intellectual disability as deficits in intelligence and adaptive functioning, with onset during childhood development. Individuals with this disorder must also meet the cognitive impairment standard.
Suicidal ideation

Suicidal ideation is defined as having thoughts of suicide or of taking action to end one’s own life, irrespective of whether the thoughts include a plan to commit suicide or an actual attempt. Studies indicate that the majority of all suicides are associated with psychiatric disorders.

14.2 Prevalence

Mood Disorders-Major Depressive Disorder, Bipolar Disorder, Dysthymic Disorder

In Canada, approximately 12.2% of adults will experience major depression at some time in their lives18 with approximately 0.9% experiencing Bipolar Disorder 19. Depression is more common among women, but the sex ratio for Bipolar Disorder is approximately equal.

Anxiety disorders

Anxiety disorders are estimated to affect 3.8 – 5.0% of the Canadian population annually20.

Attention-Deficit/Hyperactivity Disorder

Prevalence rates of ADHD vary, depending on the diagnostic criteria used, the setting (e.g. general population vs. clinic sample) and the reporter (e.g. parent, teacher, self).

The point prevalence of adult ADHD is estimated at 4.4%, and it is estimated that 36.3% of those with ADHD in childhood continue to meet diagnostic criteria in adulthood.21,22

22 Kessler, R.C., Adler, L.A., Barkley, R. Patterns and predictors of ADHD persistence into adulthood: Results from the National Comorbidity Survey Replication. Biological Psychiatry 2005, 57(11): 1442-1451
Schizophrenia

Schizophrenia is estimated to affect 0.4% of people in the community over their lifetime, with onset typically in early adulthood (late teens to mid-30s). Males and females are affected equally.23

Personality disorders

Epidemiological studies show a range of prevalence of personality disorder from 9.0% to 15.7% in international studies of community-based populations.

Suicidal ideation

In 2012, 3296 people died of suicide in Canada, corresponding to a rate of 10.4 deaths per 100,000 people.24

14.3 Psychiatric disorders and adverse driving outcomes

Despite the prevalence of psychiatric disorders in the general population, there have been few investigations into the relationship between these disorders and adverse driving outcomes.

There are a number of methodological issues that impact the ability to draw conclusions from the existing research, in particular, the impact of improved treatment of psychiatric disorders and changes in the complexity of the driving environment on the results of older studies. Nonetheless, the consistency of findings supports a general conclusion that drivers with psychiatric conditions are at increased risk of adverse driving outcomes.

Mood disorders - Major Depressive Disorder, Bipolar Disorder, Dysthymic Disorder

A few studies have identified depression as one of a number of factors that may influence driving performance. However, the results of these studies are equivocal, and methodological limitations significantly limit any conclusions that may be drawn.

Pharmacological treatment of mood disorders is an important consideration. When treatment is effective, the alertness, cognitive ability and judgment of a person with a mood disorder may be improved. At the same time, the significant side effects of antidepressant medications may include impairments in psychomotor functioning,

24 http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/hlth66a-eng.htm
sedation and impairments in cognitive functioning. The impact of the side effects of drug treatment on driving is considered in Chapter 15, Drugs, Alcohol and Driving.

Anxiety disorders
There are no studies that have investigated the relationship between anxiety disorders and driving, although symptoms of anxiety may increase the risk of self-reported collisions.25 Pharmacological treatment with sedatives or hypnotics may include side effects that impair functional ability to drive. See Chapter 15, Drugs, Alcohol and Driving, for more information.

Attention-Deficit/Hyperactivity Disorder
There is a small body of research that suggests that drivers with ADHD are at a higher risk for crashes, have higher rates of traffic citations and licence revocations or suspensions, and are more likely to drive without a licence. There is some indication that pharmacological treatment of ADHD with stimulants may have a positive effect on driving performance. However, research in this area has primarily relied on driving simulators to measure outcomes. A few studies have investigated the relationship between pharmacological treatment of ADHD and on-road performance. However, methodological limitations, including small sample size, limit the findings. The effects of pharmacological treatment of ADHD are discussed further in Chapter 15, Drugs, Alcohol and Driving.

Schizophrenia
The results of the few studies on the relationship between Schizophrenia and adverse real-world driving outcomes are equivocal, although may be related to a reduced rate of licensure and driving exposure, as simulator studies tend to consistently show impairment.

Personality disorders
There are no contemporary studies of the risks of collisions associated with personality disorders.

However, two studies, both more than 30 years old, considered the relationship between personality disorders and adverse driving outcomes. Both studies found an increased crash risk for drivers with personality disorders.

Suicidal ideation

Studies on the incidence of traffic suicides indicate that suicide attempts play a significant role in motor vehicle crashes. Moreover, it is likely that the reported incidence rates of traffic suicides are an underestimation, due to the methodological difficulties in classifying a traffic death as suicide. Research indicates the following risk factors for traffic suicides:

- males are significantly more at risk (90% to 95%) than females
- whites are more at risk than other racial groups
- those who are “depressed” or “mentally disturbed” are more at risk than those who are not, and
- those with a history of attempted suicide or a family history of suicide are more at risk than those without such history.

14.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood disorders</td>
<td>Persistent impairment: Functional assessment</td>
<td>Cognitive</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Anxiety disorders</td>
<td></td>
<td>Psychomotor</td>
<td>Functional assessment</td>
</tr>
<tr>
<td>ADHD</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>Cognitive</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td></td>
<td>Psychomotor</td>
<td></td>
</tr>
<tr>
<td>Personality disorders</td>
<td>Persistent impairment: Functional assessment</td>
<td>Affective</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>Affective</td>
<td>Medical assessments</td>
</tr>
</tbody>
</table>

Psychiatric disorders can result in either a persistent or episodic impairment of the functions necessary for driving.
The role of insight

A driver’s level of insight is a critical consideration when assessing the risk of an episodic impairment of functional ability due to a psychiatric disorder.

Drivers with good insight are more likely to be diligent about their treatment regime and to seek medical attention and avoid driving when experiencing acute episodes and have the judgment and willingness to adapt their driving to these limitations.

Poor insight may be evidenced by non-compliance with treatment, trivializing the driver’s role in a crash or repeated involuntary admissions to hospital, often as a result of discontinuing prescribed medication.

Affect

Affect refers to the observed expression of emotion. The ability to manage one’s affect is an important functional component of safe driving performance. Affect includes:

- emotional intelligence
- impulse control/emotional control
- frustration threshold
- agitation, and
- impulsivity and/or mood control/management.

Psychomotor

Psychomotor functions affect the coordination of cognitive processes and motor activity. Abnormalities can include agitation, restlessness, pacing, aimless activity or slowing down of movements or thought. In his document, psychomotor function will be considered as one of the functional abilities needed for driving for drivers with psychiatric disorders.

Mood disorders - Major Depressive Disorder, Bipolar Disorder, Dysthymia

Cognitive abilities that may be affected by mood disorders include:

- attention and concentration
- memory
- information processing
- reaction time, and
- psychomotor functioning.
Anxiety disorders

The research on the effects of anxiety disorders on functional ability is limited. Findings from studies examining the effects of anxiety disorders on cognitive functioning are equivocal. Neurobiological studies suggest that medial and temporal lobe structures are affected in anxiety disorders. These are structures that are responsible for memory and higher order executive functioning. From a clinical perspective, the potential for diminished attention or perseverating on errors (including “freezing”) in the face of unexpected risks on the road may be of concern for driving.

Attention-Deficit/Hyperactivity Disorder

The pattern of deficits in adults with ADHD is similar to that in children and adolescents. One of the primary cognitive functions that may be affected is the ability to sustain attention, particularly when performing demanding cognitive tasks. In addition to attentional impairments, individuals with ADHD often experience other cognitive deficits such as difficulties with:

- planning and forethought
- flexibility
- problem solving
- working memory, and
- response inhibition.

Symptoms of ADHD referenced in the DSM-5 that may be relevant to driving include:

inattention examples

- often fails to give close attention to details or makes careless mistakes in school work, work or other activities
- often has difficulty sustaining attention in tasks or play activities
- often is easily distracted by extraneous stimuli

Hyperactivity-impulsivity examples

- often is “on the go” or acts as if “driven by a motor”
- often has difficulty awaiting his or her turn

Schizophrenia

Apart from the core symptoms of psychosis (delusions, hallucinations, disorganized thoughts and (behavior), apathy and neuropsychological deficits associated with schizophrenia may impact driving. The degree of functional impairment associated with schizophrenia varies between the acute and residual phases of the disorder. Neuropsychological functions that may be impaired include:

- attention
- executive function
- spatial abilities
- memory, and
- motor and tactile dexterity.

Personality disorders

The characteristics of personality disorders most likely to affect driving include:
- affectivity (e.g. aggression, frustration, anger)
- interpersonal functioning (e.g. failure to conform to social norms, reckless disregard for the safety of others), and
- poor impulse control.

Suicidal ideation

Suicidal ideation is an important consideration regarding drivers with psychiatric disorders because of the risk of traffic suicide.

Pharmacological treatment

In addition to the direct effects of psychiatric disorders on functional ability to drive, the impact of pharmacological treatment is an important consideration when assessing drivers. The effects of drug treatment are considered in Chapter 15, Drugs, Alcohol and Driving.

14.5 Compensation

Drivers with psychiatric disorders may be able to compensate for their impairments if treated and/or stabilized. Functional assessment may be required.

14.6 Guidelines for assessment

14.6.1 Psychiatric disorder—All drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>the condition is stable</td>
</tr>
<tr>
<td></td>
<td>the driver has sufficient insight to stop driving if condition becomes acute</td>
</tr>
<tr>
<td></td>
<td>the functional abilities necessary for driving are not impaired</td>
</tr>
<tr>
<td></td>
<td>a treating physician supports a return to driving, for drivers who have stopped driving due to a psychiatric disorder, and</td>
</tr>
<tr>
<td></td>
<td>the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>
| Conditions for maintaining licence | • Stop driving and report to the authority if hospitalized due to a psychiatric disorder
• Remain under regular medical supervision and comply with prescribed psychotropic medication regime or other recommended treatment |
| Reassessment | • Routine, or more frequently at the discretion of the licensing authority. |
| Information from health care providers | • Opinion of treating physician whether the condition is stable and controlled
• Opinion of treating physician whether the driver has sufficient insight to stop driving if condition becomes acute
• Opinion of treating physician whether the functional abilities necessary for driving may be persistently impaired by the condition or its treatment, and if yes, the results of a functional assessment
• Whether the driver remains under regular medical supervision
• Details of any prescribed psychotropic medication regime or other recommended treatment and opinion of treating physician whether the driver is compliant with the treatment
• A specialist’s report supporting a return to driving, for drivers who have stopped driving due to a psychotic episode
• Date of most recent psychotic episode
• Opinion of treating physician as to the appropriate reassessment interval |
| Rationale | Given the nature of psychiatric disorders, assessment must rely primarily on the clinical judgment of health care professionals involved in treatment. Where the disorder results in a persistent impairment, the impact of that impairment should be functionally assessed. |
Chapter 15: Drugs, alcohol and driving

15.1 About drugs, alcohol and driving

It is increasingly clear that psychotropic (capable of affecting the mind, emotions or behaviour) drugs contribute to impairment in driving performance. It has been estimated that at least 10% of all people killed or injured in crashes were taking psychotropic medication, which might have been a contributory factor to the crash.

A 2011 study, Drug use by fatally injured drivers in Canada (2000-2008) by the Canadian Centre on Substance Abuse in Ottawa approximately 35% of people killed in accidents in Canada had drugs (includes legal and illicit drugs) in their system.

This chapter focuses on drugs that are commonly prescribed or used to treat medical conditions, and that are known to have psychotropic effects or potential side effects that could impair functional ability to drive. While alcohol is not used to treat medical conditions, information related to alcohol and driving is included.

Opioids (narcotics)

Opioids are derived from natural opium or a synthetically produced equivalent and are used primarily for moderate to severe pain relief. Opioid drugs include the following:

- codeine
- fentanyl [Duragesic®]
- morphine [MS-Contin®, M-Eslon®]
- meperidine [Demerol®]
- methadone
- pentazocine [Talwin®]
- hydromorphone [Dilaudid®, Hydromorph Cont®]
- oxycodone [Percodan®, Percocet®, Endocet®, Supeudol®, Oxy Neo®], and
- hydrocodone [Hycodan®]

Alcohol

Alcohol is a depressant drug that has both sedative and disinhibitory effects. It also impairs a driver’s judgement, reflex control and behaviour towards others. According to the CMA Physicians Guide (8th Edition) and The Chief Public Health Officer’s Report on the State of Public Health in Canada 2015 – Alcohol Consumption in Canada, people who are regular users of alcohol, withdrawal from alcohol may trigger seizures and cause other health problems such as liver disease, cancer, heart disease, and diabetes or neurological complications.
Antidepressants

Antidepressants are used in the treatment of major depression and a variety of other conditions such as chronic pain, anxiety, eating disorders, personality disorders and Obsessive Compulsive Disorder. Classes of antidepressants and examples of drugs from each class are listed in the table below.

<table>
<thead>
<tr>
<th>Class</th>
<th>Generic Name</th>
<th>Brand Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic antidepressants (TCAs)</td>
<td>amitriptyline</td>
<td>Elavil®</td>
</tr>
<tr>
<td></td>
<td>imipramine</td>
<td>Tofranil®</td>
</tr>
<tr>
<td></td>
<td>nortriptyline</td>
<td>Aventyl®</td>
</tr>
<tr>
<td></td>
<td>desipramine</td>
<td>Norpramin®</td>
</tr>
<tr>
<td></td>
<td>clomipramine</td>
<td>Anafranil®</td>
</tr>
<tr>
<td></td>
<td>doxepin</td>
<td>Sinequan®</td>
</tr>
<tr>
<td>Serotonin antagonist-reuptake inhibitor (SARIs)</td>
<td>trazadone</td>
<td>Desyrel®</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Generic Name</th>
<th>Brand Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective serotonin-reuptake inhibitors (SSRIs)</td>
<td>fluoxetine</td>
<td>Prozac®</td>
</tr>
<tr>
<td></td>
<td>fluvoxamine</td>
<td>Luvox®</td>
</tr>
<tr>
<td></td>
<td>sertraline</td>
<td>Zoloft®</td>
</tr>
<tr>
<td></td>
<td>citalopram</td>
<td>Celexa®</td>
</tr>
<tr>
<td></td>
<td>paroxetine</td>
<td>Paxil®</td>
</tr>
<tr>
<td>Dual action agents (DAAs)</td>
<td>venlafaxine</td>
<td>Effexor®</td>
</tr>
<tr>
<td>Atypical Antidepressants</td>
<td>bupropion</td>
<td>Zyban®, Wellbutrin SR®</td>
</tr>
<tr>
<td>Monoamine oxidase inhibitors</td>
<td>phenelzine</td>
<td>Nardil®</td>
</tr>
<tr>
<td></td>
<td>moclobemide</td>
<td>Various generics</td>
</tr>
<tr>
<td></td>
<td>tranylcypromine</td>
<td>Parnate®</td>
</tr>
</tbody>
</table>

Antiepileptics

The following are 8 major categories of drugs used in the treatment of epilepsy and other conditions such as mood disorders or pain, in approximate order of the date they were introduced:

- barbiturates and derivatives (phenobarbital)
- succinimide derivatives (methsuximide [Celontin®])
- hydantoin derivatives (phenytoin [Dilantin®])
- iminostilbene derivatives (carbamazepine [Tegretol®])
- benzodiazepines (clonazepam [Clonapam®])
• carboxylic acid derivatives (divalproex sodium [Epival®], valproic acid [Depakene®])
• various anticonvulsants (lamotrigine [Lamictal®], topiramate [Topamax®])
• GABA derivatives (gabapentin [Neurontin®]).

Antihistamines
Antihistamines inhibit the activity of histamine, a protein involved in many allergic reactions. They are commonly prescribed to alleviate the symptoms of allergic reactions.

Examples of older antihistamines include:
• chlorpheniramine [Chlortripolon®]
• diphenhydramine [Benadryl®].

Examples of newer antihistamines include:
• loratadine [Claritin®]
• cetirizine [Reactine®]
• desloratadine [Aerius®], and
• fexofenadine [Allegra®].

Antipsychotics
Antipsychotics are used primarily in the management of serious mental disorders such as Schizophrenia, Bipolar Disorder and organic psychoses (psychiatric symptoms arising from damage to or disease in the brain). The two major groups of antipsychotics are the “typical” or conventional antipsychotics, introduced in the early 1950s, and the “atypical” antipsychotics, introduced in the early 1990s and later.

Examples of typical antipsychotics include:
• haloperidol [Haldol®], and
• chlorpromazine [Largactil®]
• loxapine [Loxapac®]
• trifluoperazine [Stelazine®].

Examples of atypical antipsychotics include:
• clozapine [Clozaril®]
• risperidone [Risperdal®]
• olanzapine [Zyprexa®]
• aripiprazole [Abilify®]
• paliperidone [Invega®].
• quetiapine [Seroquel®], and
• ziprasidone [Zeldox®].

Cannabis

Although the use of cannabis was legalised in Canada in 2018, it could be prescribed by physicians since a 2002 court decision mandating legal access for medical purposes. Tetrahydrocannabinol (THC) is the principle psychoactive constituent in cannabis and is responsible for most of the effects on driving. Its effects include delays in decision-making and information processing, but the extent of these effects can vary widely according to the concentration of THC. Over the past fifty years the concentration of THC has been increased through cultivation from 1% to more than 30%. Cannabis provided by Health Canada had a guaranteed concentration of THC of 12%. Obviously, the concentration of THC will have a major role in the extent of its effects upon the individual.

Non-steroidal anti-inflammatories

Non-steroidal anti-inflammatory drugs (NSAIDs) are used for pain relief, the reduction of fever, and to reduce inflammation. Examples of NSAIDs include:

• acetylsalicylic acid [Aspirin®, Entrophen®]
• diclofenac [Voltaren®]
• ibuprofen [Motrin®]
• naproxen [Anaprox®, Aleve®, Naprosyn®]
• celecoxib [Celebrex®], and
• indomethacin [Indocid®].

NSAIDs often are used in the treatment of mild to moderate pain, inflammation and fever in both acute and chronic conditions, such as:

• rheumatoid arthritis and osteoarthritis
• gout
• metastatic bone pain
• headaches and migraines, and
• mild to moderate pain due to inflammation and tissue injury (e.g. pain associated with tooth extraction, root canal, sports injuries, etc.)
• menstrual pain.
Sedatives and hypnotics

Sedative and hypnotic drugs are central nervous system depressants. They are used to treat anxiety, insomnia, alcohol withdrawal, as muscle relaxants, and as anticonvulsants. The major categories are barbiturates, benzodiazepines and a new class of non-benzodiazepine sedatives called Z drugs.

Benzodiazepines can be divided into short acting, (those with a short half-life of 2 to 4 hours), which generally are used to treat insomnia, intermediate acting (those with half-life of 12-24 hours) and long-acting (those with a long half-life of >24 hours), which are used to treat anxiety.

Categories of sedatives and hypnotics and examples of drugs in each category are provided in the table below.

<table>
<thead>
<tr>
<th>Category</th>
<th>Generic Name</th>
<th>Brand Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbiturates</td>
<td>phenobarbital</td>
<td>Various generics</td>
</tr>
<tr>
<td>Benzodiazepines with a short half-life</td>
<td>triazolam</td>
<td>Halcion®</td>
</tr>
<tr>
<td></td>
<td>alprazolam</td>
<td>Xanax®</td>
</tr>
<tr>
<td></td>
<td>oxazepam</td>
<td>Serax®</td>
</tr>
<tr>
<td>Benzodiazepines with a medium half-life</td>
<td>lorazepam</td>
<td>Ativan®</td>
</tr>
<tr>
<td></td>
<td>temazepam</td>
<td>Restoril®</td>
</tr>
<tr>
<td></td>
<td>chloridazepoxide</td>
<td>Librium®</td>
</tr>
<tr>
<td>Benzodiazepines with a long half-life</td>
<td>clonazepam</td>
<td>Rivotril®</td>
</tr>
<tr>
<td></td>
<td>diazepam</td>
<td>Valium®</td>
</tr>
<tr>
<td></td>
<td>clorazepate</td>
<td>Tranxene®</td>
</tr>
<tr>
<td></td>
<td>flurazepam</td>
<td>Dalmane®</td>
</tr>
<tr>
<td>Z drugs (non-benzodiazepines)</td>
<td>zopiclone</td>
<td>Imovane®</td>
</tr>
<tr>
<td></td>
<td>zolpidem</td>
<td>Sublinox®</td>
</tr>
</tbody>
</table>

Stimulants (for ADHD, Narcolepsy)

Examples of stimulants used in the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD) and Narcolepsy include:

- methylphenidate [Ritalin®, Concerta®, Biphentin®]
- modafinil [Alertec®]
- dextroamphetamine [Dexedrine®], and
- mixed amphetamine salts [Adderall®].
15.2 Prevalence

Opioids

No data are available on the use of opioids as a treatment for medical conditions in Canada.

Alcohol

In Canada, alcohol is the most widely consumed psychoactive drug except for caffeine. In 2013, an estimated 22 million Canadians, almost 80% of the population, reported that they drank alcohol in the previous year.

According to the *Traffic Injury Research Foundation, Road Safety Monitor 2014 Drinking and Driving in Canada* almost 18% of Canadians reporting drinking heavily on one occasion at least once a month in the previous year. Heavy drinking is defined as drinking 5 drinks or more for men and 4 drinks or more for women.

In 2015, 17.4% of Canadians admitted to driving after consuming any amount of alcohol in the past 30 days, and 6.6% indicated they had driven when they thought they were over the legal limit in the past 12 months.

Antidepressants

The most commonly used classes of antidepressants are SSRIs, dual action agents and tricyclics. Research from 2002 showed that SSRIs had a 46.3% market share, dual action agents had 23.9% and tricyclics had 23.7%. The least commonly used class was monoamine oxidase inhibitors, with a 2.1% market share.

Between 1981 and 2000, total prescriptions for antidepressants increased almost five fold, from 3.2 to 14.5 million. The 2002 Canadian Community Health Survey indicated that 5.8% of Canadians were taking antidepressants. Of those who had a major depressive episode in the past year, 40.4% were taking antidepressants.

Antiepileptics

No data on the prevalence of antiepileptic drug use in Canada is available. Epilepsy itself has a prevalence rate of 0.6% in the Canadian population. The incidence of epilepsy is 15,500 new cases per year, with 60% of these being young children or seniors. Because of the variability of the presentation of epilepsy among those diagnosed, and the use of antiepileptic drugs for conditions other than epilepsy, it is difficult to extrapolate the prevalence of anticonvulsant drug use based on the prevalence and incidence of epilepsy.

Antihistamines

The general use of antihistamines is difficult to ascertain. However, it has been estimated that allergic conditions that may be treated with antihistamines affect 10% to 25% of the population.
Antipsychotics

Prevalence statistics on the use of antipsychotics in Canada using population based surveys are complicated by low prevalence and questionable validity.

Non-steroidal anti-inflammatories

NSAIDs are among the most commonly used pharmacological agents, with 10 million prescriptions dispensed annually in Canada. The use of NSAIDs is predicted to increase with the aging population due to the association between age and musculoskeletal disorders such as osteoarthritis and rheumatoid arthritis.

Cannabis

In 2018 the use of cannabis was legalised. There are no statistics available on its use following legalisation.

Sedatives and hypnotics

Data from the 2002 Canadian Community Health Survey indicated that the percentage of those who had used a sedative or hypnotic increased with age, moving from 3.1% of the general population 15 years and older, to 11.1% of those 75 and older. Overall, 7.2% of those with anxiety disorders had taken a sedative-hypnotic over the two days preceding the survey.

Benzodiazepine use made up most of the sedative-hypnotic use in all analyzed demographic and diagnostic groups. Information from this survey and other studies indicate that benzodiazepines are one of the most frequently used classes of drugs by seniors and women.

Stimulants

No data is available on the prevalence or incidence of the use of stimulants as a treatment for ADHD in Canada. An indication of the use of stimulants for ADHD may be gleaned from the prevalence of the condition itself. Research indicates that ADHD affects between 3% and 10% of children and between 4% and 6% of adults. Of adolescents and adults with ADHD, 76% achieve a therapeutic response with stimulant medication.

15.3 Psychotropic drugs, alcohol and adverse driving outcomes

Opioids

Research indicates that the use of opioids can adversely affect driving performance, with the degree of impairment dependent on the particular opioid used, dosage, previous use and developed tolerance, time of day taken.
Alcohol

Alcohol’s effects are dose dependent and differ among individuals. Impaired driving is the leading cause of criminal death in Canada. According to Transport Canada total road fatalities in Canada in 2012 were 2,076 and 563 Canadians died in fatal accidents involving alcohol, which is approximately one quarter of all fatalities in motor vehicle accidents in Canada.

Antidepressants

Currently, there is little evidence to associate SSRIs or dual action agents with impaired driving performance. Although limited, research indicates that the use of tricyclic antidepressants is associated with impairments in driving performance. This is evidenced by elevated crash rates, as well as measures of on-road performance and laboratory tests of psychomotor and cognitive functioning.

Antiepileptics

In general, individuals with epilepsy have an increased risk for adverse driving outcomes, which may be caused by either the episodic impairment (seizures) or persistent impairments caused by the condition or treatment. Many classes of drugs may be used to treat epilepsy as well as combinations of drugs. Driving outcomes would depend on which medications are used in the treatment.

Antihistamines

Research indicates that the use of older antihistamines may impair driving performance. However, newer antihistamines used in therapeutic doses do not appear to increase the risk of adverse driving outcomes.

Antipsychotics

Studies examining the driving performance of individuals treated with antipsychotics (primarily those with Schizophrenia) indicate that those treated with atypical antipsychotics perform better than those treated with typical antipsychotics. However, less than 33% of those on atypical antipsychotics and 5% to 11% of those on typical antipsychotics were found to have adequate driving performance. It should be noted that these results are based on functional tests conducted in a laboratory setting, and the relationship of these results to actual driving performance has not been established. Further, it is difficult to determine the relative impact of the underlying condition and antipsychotic treatment on driving performance.

Cannabis

A meta-analysis completed by Regeberg (2016) found that cannabis elevated the relative risk of crashing to 1.3, a rather modest amount and about the same as the case of antidepressants according to the study*. A Canadian systematic review led by Asbridge (2012) found that cannabis use elevated the relative risk of a crash to 1.92*. (.) Both of these studies noted major differences in crash risk between the better-quality studies and the moderate-quality studies with the former having consistently
higher risk. It should also be noted that these studies do not differentiate between medical and recreational use of cannabis.

Although legalisation of cannabis is predicted to result in increased crashes, five years after legalisation in Washington and Colorado the increase in crashes was less than in the neighbouring states where cannabis remained illegal according to a 2017 study by IIHS.

No matter whether the cannabis is used for medical or recreational reasons, **driving under the influence of cannabis is an offence under the Criminal Code of Canada**. No one should drive during the five-hour period following the inhalation of cannabis (smoking or vaping) or for eight hours following oral ingestion (cookies or brownies).

Non-steroidal anti-inflammatories

There is only a small body of literature related to the effects of NSAIDs on driving performance. These limited studies however indicate that the use of NSAIDs is associated with an increased risk of crash in both young and old drivers.

Sedatives and hypnotics

Research indicates that the use of sedatives and hypnotics is associated with a significant risk for adverse driving outcomes.

Stimulants (for ADHD)

There is some indication that pharmacological treatment of ADHD with stimulants may have a positive effect on driving performance. However, research in this area has primarily relied on driving simulators to measure outcomes. A few studies have investigated the relationship between pharmacological treatment of ADHD and on-road performance, but methodological limitations, including small sample size (< 20 in all cases), limit the findings.

<table>
<thead>
<tr>
<th>15.4 Effect on functional ability to drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Use of psychotropic drugs</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Authorities should be primarily concerned with the persistent cognitive impairment associated with the effects or side effects of medication used for ongoing treatment of medical conditions. Potential temporary impairments from short term treatment or
changes in dosage or type of medication are considered transient impairments for licensing purposes. Where an individual is taking multiple drugs (polypharmacy), authorities must also consider the potential compounding effects. Where relevant, authorities should also consider the potential compounding effect of the use of alcohol or illicit drugs.

Opioids

The use of opioids results in depression of the central nervous system. Possible effects on the functions necessary for driving include:

- blurred vision
- poor night vision
- slowed reaction times
- sedation
- tremors
- muscle rigidity
- impairment of short term/working memory and attention, and
- disorientation or hallucinations.

The effects of opioids on an individual depend on a number of factors, including the length of use, dosage and propensity for abuse or addiction. Tolerance is an important consideration in that adverse effects may be evident during acute use but diminish as tolerance develops.

Alcohol

Alcohol is a depressant drug which slows down the brain and body. Effects on function necessary for driving may include but are not limited to:

- reduced reaction times
- blurred or double vision
- altered depth perception
- reduced judgement and insight
- blunted alertness
- reduced motor co-ordination.

Antidepressants

The effects of antidepressants on cognitive ability vary by therapeutic class. Depression itself may result in cognitive impairment. While the use of antidepressants may improve cognitive function, the side effects may include cognitive impairment, including:

- impairment of thought processing
• attention deficits
• indecisiveness, and
• impairment of psychomotor function.

Therefore, distinguishing between the effects of the disorder and the side effects of antidepressants may be a challenge.

Tricyclic antidepressants

The major side effects of TCAs that may affect driving are anticholinergic effects, such as confusion or blurred vision, and sedating effects. The following table outlines the severity of the sedating effect of common TCAs.

<table>
<thead>
<tr>
<th>Sedating Effect</th>
<th>TCAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Desipramine, nortriptyline [Aventyl®],</td>
</tr>
<tr>
<td>Moderate</td>
<td>imipramine [Tofranil®]</td>
</tr>
<tr>
<td>High</td>
<td>amitriptyline [Elavil®], doxepin [Sinequan®]</td>
</tr>
</tbody>
</table>

Selective serotonin-reuptake inhibitors

SSRIs generally have fewer side effects than TCAs. Nonetheless, some studies have shown impairments in both cognitive and psychomotor functioning in individuals using SSRIs.

Dual action antidepressants

Research indicates new DAAs, atypical antidepressants (the most recently introduced class of antidepressants), have fewer side effects than TCAs or SSRIs, but cognitive impairment associated with depression and/or treatment may still be present.

Antiepileptics

Anticonvulsants may impair motor and sensory functions, producing:

• ataxia (lack of coordination; unsteadiness)
• nystagmus (uncontrollable rapid eye movement)
• poor concentration
• slowed thinking
• blurring and double vision, and/or
• tremor.

Disruption of normal cognitive function is a frequent and pervasive side effect of anticonvulsant drugs. A variety of cognitive abilities may be affected, including memory, reaction time, executive functioning and problem solving.
The known side effects of first generation anticonvulsant drugs (phenobarbital, phenytoin, benzodiazepines and valproate) include sedation and cognitive dysfunction. Adverse cognitive effects, including impairments in memory and attention, are also evident with the use of more recently introduced anticonvulsant drugs (e.g. topiramate), though these generally have fewer side effects.

Antihistamines

Histamine is involved in many brain functions, including the waking-sleep cycle, attention, memory, learning and excitation. The effects of antihistamines differ depending on their generation. Older antihistamines, such as tripolidine [Actifed®], diphenhydramine [Benadryl®], and clemastine are associated with profound sedation, impaired psychomotor function and blurred vision.

Newer antihistamines, such as:

- loratadine [Claritin®]
- cetirizine [Reactine®]
- fexofenadine [Allegra®], and
- desloratadine [Aerius®]

are largely free from the sedating effects of the older antihistamines. However, at high doses, significant side effects have been reported, though still less pronounced than those associated with older antihistamines.

Beta-blockers

Beta-blockers include:

- propanolol [Inderal®], and
- atenolol [Tenormin®]

Common side effects of beta-blockers include tiredness, sleep disturbances and dizziness. Less common side effects relevant to driving include impairments in attention, mental flexibility (executive functioning) and memory.

The available evidence indicates that impairments in cognitive functioning can be a side effect of beta-blockers. However, results from the majority of studies indicate that there is little in the way of evidence to indicate that beta-blockers negatively impact cognitive performance in the general population of beta-blocker users.

Cannabis

The euphoric phase induced by THC affects judgement. Additional effects are time distortion, relaxation, exaggeration of sensory experiences and loss of inhibitions. The longer-lasting motor and cognitive effects affect coordination and short-term memory. Physical effects can include flushing and red eyes.
Use of dried cannabis leaves through inhalation or ingestion is known to produce psychoactive effects that may affect driving for up to 24 hours. Driving under the influence of cannabis is illegal according to the Criminal Code of Canada and drivers using cannabis in a medical context (medical marijuana) should be advised not to drive for at least five hours, and preferably for at least 24 hours, after use of the substance.

Many users of “medical marijuana” exceed the average usage rates (1.5 grams or 3 joints a day) by considerable margins. Drivers using “medical marijuana” in quantities exceeding the average usage rates should be counselled to avoid driving completely during periods of over-average consumption.

Antipsychotics

Research suggests that atypical antipsychotic drugs may improve cognitive functioning in individuals with Schizophrenia compared to treatment with typical antipsychotics. Nonetheless, the research indicates that even with atypical antipsychotics, individuals still experience residual cognitive impairments.

Non-steroidal anti-inflammatories

In general, the analgesic and anti-inflammatory effects of NSAIDs result in improvements in functional abilities (e.g. reduction in pain and stiffness in those with osteoarthritis, resulting in increased physical function and improvements in quality of life). However, there is a suggestion that the use of NSAIDs can impair cognitive ability.

Sedatives and hypnotics

The adverse effects of sedatives and hypnotics may include:

- sedation
- drowsiness
- cognitive and psychomotor impairment
- impaired coordination
- vertigo
- dizziness, and
- blurred or double vision.

Impairments are greater with higher dosages and with drugs that have a longer half-life. Those using sedatives and hypnotics are subject to developing dependency, addiction and increasing tolerance of the effects. Because of this, Health Canada advises that these drugs should only be used for short periods (e.g. less than 2 months for anxiety; 7 to 10 days for insomnia). Nonetheless, research indicates that long term use is not uncommon. Long term adverse effects of benzodiazepine may include cognitive decline, unwanted sedation and impaired coordination.
Stimulants (for ADHD) and Narcolepsy

There is some indication that stimulants may have a positive effect on driving performance. However, the effect of stimulant medication on the functional ability of drivers with ADHD is unclear because of the methodological limitations of research to date.

15.5 Compensation

A driver can’t compensate for the effects of psychotropic drug use.

15.6 Guidelines for assessment

15.6.1 Medication – Prescribed - All Drivers

This standard applies to prescribed medication including psychotropic drugs and prescribed medical marijuana

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• The functional abilities necessary for driving are not impaired and</td>
</tr>
<tr>
<td></td>
<td>• Where required, a functional assessment shows that the side effects of medication does not affect ability to drive</td>
</tr>
</tbody>
</table>

Drivers on a formal methadone maintenance program must provide an addictions specialist report, in addition to meeting the above requirements.

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the licensing authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Types of psychotropic drugs used</td>
</tr>
<tr>
<td></td>
<td>• Details of underlying medical conditions</td>
</tr>
<tr>
<td></td>
<td>• Opinion of treating physician whether the individual is non-compliant or misuses psychotropic drugs</td>
</tr>
<tr>
<td></td>
<td>• Functional impairment, if any</td>
</tr>
</tbody>
</table>

| Rationale | The use of a psychotropic drug does not mean that a driver is ineligible for a licence. Where there is some evidence of a persistent cognitive impairment associated with the stable use of a drug, an individual assessment of the effect of the drug is required to determine licence eligibility. |
15.6.2 Medication – Non Prescribed (Over the Counter) – All drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• The functional abilities necessary for driving are not impaired and,</td>
</tr>
<tr>
<td></td>
<td>• Where required, a functional assessment shows the side effects of medication do not affect ability to drive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Routine or more frequently at the discretion of the licensing authority</th>
</tr>
</thead>
</table>

Information from health care providers	
--	
Types of drugs used	
Details of underlying medical conditions	
Opinion of treating physician whether the individual is non-compliant or misuses drugs	
Functional impairment, if any	

| Rationale | The use of a psychotropic drug does not mean that a driver is ineligible for a licence. Where there is some evidence of a persistent cognitive impairment associated with the stable use of a drug, an individual assessment of the effect of the drug is required to determine licence eligibility. |
15.6.3 Substance Use Disorder - All drivers

This applies to all drivers who are under the influence of alcohol and illicit drugs such as opioids, cocaine, amphetamines etc.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Meets the criteria for remission and/or has abstained from the substance for 12 months.</td>
</tr>
<tr>
<td></td>
<td>• Earlier re-licensing may be considered upon favourable recommendation from an addictions specialist and/or treating physician recognized by the licensing authority, and the successful completion of a drug rehabilitation program.</td>
</tr>
<tr>
<td></td>
<td>• The functional abilities necessary for driving are not impaired.</td>
</tr>
<tr>
<td></td>
<td>• Where required, a road test or other functional assessment shows that the functional abilities for driving are not impaired.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the licensing authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Types of drugs used</td>
</tr>
<tr>
<td></td>
<td>• Details of underlying medical conditions</td>
</tr>
<tr>
<td></td>
<td>• Opinion from an addictions specialist and/or treating physician recognized by the licensing authority</td>
</tr>
<tr>
<td></td>
<td>• The successful completion of a substance abuse rehabilitation program and</td>
</tr>
<tr>
<td></td>
<td>• Report on whether the individual is abstinent / and or in remission</td>
</tr>
<tr>
<td>Rationale</td>
<td>These substances are known to potentially impair the ability to operate a motor vehicle safely</td>
</tr>
</tbody>
</table>
15.6.4 Alcohol, Cannabis and Driving – All drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Impaired individuals are not permitted to drive any class of motor vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine or more frequently at the discretion of the licensing authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>n/a</td>
</tr>
<tr>
<td>Rationale</td>
<td>Alcohol is known to impair the ability to operate a motor vehicle safely</td>
</tr>
<tr>
<td></td>
<td>Medical Marijuana (Cannabis) is known to impair the ability to operate a motor vehicle safely. In general, individuals should not drive for approximately 5 hours after consuming medical marijuana and not drive at all if consuming 3 or more joints a day.</td>
</tr>
</tbody>
</table>
Chapter 16: Respiratory diseases

16.1 About respiratory diseases

Overview

A number of respiratory diseases may interfere with the safe operation of a motor vehicle by causing reduced oxygen flow to the brain and subsequent cognitive impairment, including impairments in attention, memory, decision making and judgement. Respiratory diseases that are most likely to affect cognitive functioning are those that are chronic in nature.

This chapter focuses on one of the most prevalent respiratory diseases, chronic obstructive pulmonary disease (COPD). However, other respiratory diseases also have the potential to impair driving due to reduced oxygen flow to the brain; where this is the case, the standards in this chapter also apply to them.

Chronic obstructive pulmonary disease

COPD refers to a group of diseases characterized by obstructed air flow, such as emphysema and chronic bronchitis. Emphysema and chronic bronchitis frequently coexist and the term COPD is often applied to individuals suffering from these two disorders.

The level of general impairment caused by respiratory diseases is commonly described as mild, moderate, or severe, as described in the table below.

<table>
<thead>
<tr>
<th>Level of Impairment</th>
<th>Symptoms</th>
<th>Pulmonary Function Testing(^{26}) result</th>
<th>Nature of General Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>None</td>
<td>FVC > 80% of predicted, and FEV1 > 80% of predicted, and FEV1/FVC x 100 > 75%, and DLCOsb > 80% of predicted</td>
<td>None</td>
</tr>
</tbody>
</table>

\(^{26}\) FVC = Forced vital capacity; FEV1 = Forced expiratory volume in first second; FEV1/FVC x 100 = Using the previously selected values for FVC and FEV1, compute the ratio and express as percentage; DLCOsb = Single breath diffusing capacity
<table>
<thead>
<tr>
<th>Level of Impairment</th>
<th>Symptoms</th>
<th>Pulmonary Function Testing(^{26}) result</th>
<th>Nature of General Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mildly Impaired</td>
<td>Dyspnea when walking quickly on level ground or when walking uphill; ability to keep pace with people of same age and body build walking on level ground, but not on hills or stairs.</td>
<td>FVC > 60 to 70% of predicted, or FEV1 > 60 to 79% of predicted, or FEV1/FVC x 100 > 60 to 74%, or DLCO(_{sb}) 60 to 79% of predicted.</td>
<td>Usually not correlated with diminished ability to perform most jobs</td>
</tr>
<tr>
<td>Moderately Impaired</td>
<td>Shortness of breath when walking for a few minutes or after 100m walking on level ground</td>
<td>FVC 51 to 59% of predicted, or FEV1 41 to 59% of predicted, or FEV1/FVC x 100 41 to 59%, or DLCO(_{sb}) 41 to 59% of predicted.</td>
<td>Progressively lower levels of lung function correlated with diminished ability to meet the daily demands of many jobs</td>
</tr>
<tr>
<td>Severely Impaired</td>
<td>Too breathless to leave the house, breathless when dressing. The presence of untreated respiratory failure.</td>
<td>FVC 50% or less of predicted, or FEV1 40% or less of predicted, or FEV1/FVC x 100 > 40% or less, or DLCO(_{sb}) > 40% or less of predicted.</td>
<td>Unable to meet the physical demands of most jobs, including travel to work</td>
</tr>
</tbody>
</table>

16.2 Prevalence

Estimates from the World Health Organization indicate that 80 million people have moderate to severe COPD. Chronic bronchitis affects individuals of all ages. Emphysema is more common among elderly individuals. In Canada men have a higher rate of COPD (6.3%) than women (5.2%). COPD increases in prevalence with age for both men and women with the highest prevalence for men over the age of 75 (9.1%).

16.3 Respiratory diseases and adverse driving outcomes

There have been no studies that examine the relationship between respiratory diseases and adverse driving outcomes.
16.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach(^27)</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD or other respiratory disease</td>
<td>Persistent impairment: Functional assessment</td>
<td>Cognitive</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May also result in general debility</td>
<td>Functional Assessment</td>
</tr>
</tbody>
</table>

Research indicates that drivers with COPD are at risk of cognitive impairment due to chronic hypoxemia. For those with cognitive impairment, the impairment tends to be greater for more complex and demanding cognitive tasks. This cognitive impairment may affect a driver’s functional ability to drive.

Drivers with COPD also may develop general debility resulting in a loss of stamina required to support the functions necessary for driving.

Older drivers with COPD are more at-risk for functional impairment because they may experience:

- age-related declines in blood flow to the brain
- disease-related declines in arterial oxygen content, and
- both age and disease-related declines in physical activity which can exacerbate deconditioning.

16.5 Compensation

Drivers with COPD may be able to compensate for their functional impairment by using supplemental oxygen.

\(^27\) See Part 1 for a discussion of the use of functional assessments for driver licensing decisions.
16.6 Guideline for assessment

16.6.1 Mild impairment

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Pulmonary function testing result or statement that the level of impairment resulting from the respiratory disease is mild</td>
</tr>
<tr>
<td>Rationale</td>
<td>Mild impairment due to respiratory disease is unlikely to cause significant impairment of the functions needed for driving.</td>
</tr>
</tbody>
</table>

16.6.2 Moderate impairment – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine, or more frequently at the discretion of the licensing authority</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Pulmonary function testing result or statement that the level of impairment resulting from the respiratory disease is moderate</td>
</tr>
<tr>
<td>Rationale</td>
<td>Moderate impairment due to respiratory disease is unlikely to cause significant impairment of the functions needed for non-commercial driving. Reassessment is required to monitor for an increase in impairment that may affect ability to drive.</td>
</tr>
</tbody>
</table>
16.6.3 Severe impairment – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• a functional assessment indicates sufficient functional ability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Routine, or more frequently at the discretion of the licensing authority</th>
</tr>
</thead>
</table>

| Information from health care providers | • Results of functional assessment
• Pulmonary function testing result or statement that the level of impairment resulting from the respiratory disease is severe
• Whether the driver has insight into the impact their condition may have on driving |
| --- | --- |

<table>
<thead>
<tr>
<th>Rationale</th>
<th>Severe impairment due to respiratory disease may cause significant impairment of the functions needed for driving, including cognitive impairment. Licensing decisions should be based on an individual functional assessment.</th>
</tr>
</thead>
</table>

16.6.4 Requiring supplemental oxygen – Non-commercial drivers

This guideline applies to non-commercial drivers who require supplemental oxygen while at rest.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
</table>
| | • a road test while using supplemental oxygen indicates sufficient functional ability, and
• the conditions for maintaining a licence are met |

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>Only drive while using supplemental oxygen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Routine or more frequently at the discretion of the licensing authority</th>
</tr>
</thead>
</table>

| Information from health care providers | • Results of functional assessment
• Pulmonary function testing result or statement that the level of impairment resulting from the respiratory disease requires supplemental oxygen |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rationale</td>
<td>Drivers who require supplemental oxygen due to respiratory disease may have significant impairment of the functions needed for non-commercial driving, including cognitive impairment. Licensing decisions should be based on an individual functional assessment, including ability to drive while using supplemental oxygen.</td>
</tr>
</tbody>
</table>

16.6.5 Moderate impairment – Commercial drivers

| STANDARD | Commercial drivers eligible for a licence if
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• a functional assessment indicates sufficient functional ability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>• Routine, or more frequently at the discretion of the licensing authority</th>
</tr>
</thead>
</table>

Information from health care providers	• Functional impairment, if any
	• Pulmonary function testing result or statement that the level of impairment is moderate
	• Whether the driver has insight into the impact their condition may have on driving
	• History of compliance with prescribed treatment regime

| Rationale | Moderate impairment due to respiratory disease may cause significant impairment of the functions needed for driving. Licensing decisions should be based on an individual functional assessment. |
16.6.6 *Severe impairment or requiring supplemental oxygen – Commercial drivers*

This guideline applies to commercial drivers who require supplemental oxygen while at rest.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers not eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>N/A</td>
</tr>
<tr>
<td>Reassessment</td>
<td>N/A</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>N/A</td>
</tr>
<tr>
<td>Rationale</td>
<td>Severe impairment or a requirement for supplemental oxygen due to respiratory disease generally indicates significant impairment of the functions needed for commercial driving.</td>
</tr>
</tbody>
</table>
Chapter 17: Seizures and epilepsy

17.1 About seizures and epilepsy

Seizures

A seizure is caused by a sudden electrical discharge in the brain. A seizure does not always mean that a person falls to the ground in convulsions. It can be manifested in various ways, including:

- feelings of being absent
- visual distortions
- nausea
- vertigo
- tingling
- twitching
- shaking
- rigidity of parts of the body or the entire body, or
- an alteration or loss of consciousness.

Seizures may occur in people who do not have epilepsy. These non-epileptic seizures are often referred to as provoked seizures. Some are caused by transient factors with no structural brain abnormality such as:

- fever
- low blood sugar
- electrolyte imbalance
- head trauma
- meningitis
- simple fainting, and
- alcohol or drug toxicity or withdrawal.

Others are caused by conditions where there is a structural brain abnormality such as a:

- tumour
- stroke
- aneurysm, or
- hematoma.

Provoked seizures are not epilepsy, and they resolve after the provoking factor has resolved or stabilized.
Sometimes people appear to have seizures, even though their brains show no seizure activity. This phenomenon is called a non-epileptic psychogenic seizure (NEPS), sometimes referred to as a pseudoseizure, and is psychological in origin. Some people with epilepsy have NEPS in addition to their epileptic seizures. Other people who have NEPS do not have epilepsy at all.

Epilepsy

Epilepsy refers to a condition characterized by recurrent (at least two) seizures, which do not have a transient provoking cause. The cause of the epileptic seizures may be known or unknown (idiopathic). About two-thirds of epilepsy in young adults is idiopathic, but more than half of epilepsy in those 65 and older has a known cause. Known causes of epilepsy include permanent structural brain abnormality such as scarring from:

- stroke
- prior surgery
- head injury
- infections
- tumours
- aneurysms, or
- arteriovenous malformations.

Types of seizures

Seizures are divided into two main categories: partial (also called focal or local) seizures and generalized seizures. A partial seizure is a seizure that arises from an electrical discharge in one part of the brain. A generalized seizure is caused by discharges throughout the brain.

Partial seizures

There are three types of partial seizures:

- simple partial seizures
- complex partial seizures, and
- partial seizures (simple or complex) that evolve into secondary generalized seizures (see below).

The difference between simple and complex seizures is that individuals experiencing simple partial seizures retain awareness during the seizure, whereas those experiencing complex partial seizures lose awareness during the seizure.

Symptoms of partial seizures depend on which part of the brain is affected. They may include one or more of the following:
• head turning
• eye movements
• mouth movements
• lip smacking
• drooling
• apparently purposeful movements
• rhythmic muscle contractions in a part of the body
• abnormal numbness
• tingling and a crawling sensation over the skin
• sensory disturbances such as smelling or hearing things that are not there, or
• having a sudden flood of emotions.

Individuals who have partial seizures, especially complex partial seizures, may experience an aura, i.e. unusual sensations that warn of an impending seizure. An aura is actually a simple partial seizure. The aura symptoms an individual experiences and the progression of those symptoms tend to be similar every time.

Generalized seizures

Types of generalized seizures and their symptoms are listed in the table below.

<table>
<thead>
<tr>
<th>Type of Generalized Seizure</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absence</td>
<td>Brief loss of consciousness</td>
</tr>
<tr>
<td>Myoclonic</td>
<td>Sporadic (isolated), jerking movements</td>
</tr>
<tr>
<td>Clonic</td>
<td>Repetitive, jerking movements</td>
</tr>
<tr>
<td>Tonic</td>
<td>Muscle stiffness, rigidity</td>
</tr>
<tr>
<td>Tonic-clonic or ‘grand mal’</td>
<td>Unconsciousness, convulsions, muscle rigidity</td>
</tr>
<tr>
<td>Atonic</td>
<td>Loss of muscle tone</td>
</tr>
</tbody>
</table>

Most common seizures

The three most common types of seizures in adults are:

• generalized tonic-clonic or grand mal seizures
• complex partial seizures, and
• simple partial seizures.

Approximately one-third of all individuals with epilepsy have complex partial seizures, with the prevalence increasing to one-half in those with epilepsy who are 65 and older.
Recurrence of seizures

The estimated risk of a recurrence after an initial unprovoked seizure ranges from 23% to 71%, with the average risk of recurrence for adults being 43%. If the seizure is idiopathic (i.e. the cause is unknown) and the individual’s electroencephalogram (EEG) is normal, the risk of recurrence is reduced. Individuals who experience a partial seizure and have an abnormal EEG or other neurological abnormality, have an increased risk for seizure recurrence. A family history of epilepsy also increases the risk of recurrence.

Treatment for seizures and epilepsy

Seizure patterns in individuals with epilepsy may change over time, and seizures may eventually stop. Epilepsy is generally treated with anticonvulsant drugs (antiepileptics) and is sometimes treated with surgery to remove the source of epilepsy from the brain. Recent studies indicate that more than half of newly diagnosed individuals with epilepsy can achieve seizure control with antiepileptic drugs. Many of those who achieve seizure control are eventually able to stop taking antiepileptic drugs and remain seizure-free. However, the relapse rate with drug withdrawal is at least 30% to 40%. For a further discussion of the impact of antiepileptics on driving, see Chapter 15, Psychotropic Drugs.

17.2 Prevalence

Research indicates that up to 9% of the general population will have at least one seizure. Epilepsy has an overall prevalence rate of 0.6% in Canada, with an estimated incidence of 15,500 new cases per year (2003). The table below shows the prevalence of epilepsy in Canada by age.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Prevalence (%)</th>
<th>Age (years)</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 11</td>
<td>0.3</td>
<td>25 – 44</td>
<td>0.7</td>
</tr>
<tr>
<td>12 – 14</td>
<td>0.6</td>
<td>46 – 64</td>
<td>0.7</td>
</tr>
<tr>
<td>16 – 24</td>
<td>0.6</td>
<td>> 65</td>
<td>0.7</td>
</tr>
</tbody>
</table>

17.3 Seizures, epilepsy and adverse driving outcomes

Research indicates that, in general, individuals with epilepsy have an increased risk for adverse driving outcomes. Variability in the methodology and study results makes it difficult to determine the extent of the increased risk.

Studies of crash rates indicate that the following factors increase the risk of crash for those with epilepsy:

- age – younger drivers have increased risk, particularly those under 25

- treatment – those not receiving antiepileptic drug treatment are at greater risk than those receiving treatment.

17.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seizures</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>Variable – sudden impairment</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Epilepsy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The primary consideration for drivers with epilepsy is the potential for a seizure causing a sudden impairment of cognitive, motor or sensory functions, or a loss of consciousness while driving.

17.5 Compensation

As seizures and epilepsy cause an episodic impairment of the functions necessary for driving, a driver cannot compensate.

17.6 Guideline for assessment

Rationale for all epilepsy and seizure standards

The general approach of the guideline for drivers with epilepsy or who experience seizures is that seizures must be controlled as a prerequisite to driving.

Most of the guidelines include a requirement for a seizure-free period. The purpose of this requirement for a provoked seizure is to establish the likelihood that the provoking factor has been successfully treated or stabilized. For an unprovoked seizure, the purpose is to allow time to assess the cause, and where epilepsy is diagnosed, to establish the likelihood that

- a therapeutic drug level has been achieved and maintained
- the drug being used will prevent further seizures, and
- there are no side effects that may affect the driver’s ability to drive safely.

The guidelines identify exceptions to the requirement to remain seizure free for non-commercial drivers who have epilepsy and who have only simple partial seizures, or seizures that only occur while they are asleep or immediately upon awakening.
17.6.1 Provoked seizure caused by a structural brain abnormality

If more than one seizure occurs, then the epilepsy standard is applied

This standard applies to drivers who have experienced one provoked seizures caused by a structural brain abnormality such as:

- a brain tumour
- stroke
- subdural hematoma, or
- aneurysm.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>they have undergone a neurological assessment to determine the cause of the seizure, and epilepsy is not diagnosed</td>
</tr>
<tr>
<td></td>
<td>it has been 6 months since the provoking factor stabilized, resolved, or was corrected, with or without treatment, and they have not had a seizure during that time</td>
</tr>
<tr>
<td></td>
<td>the treating neurologist or neurosurgeon indicates that further seizures are unlikely</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | None |

<table>
<thead>
<tr>
<th>Suggested Reassessment</th>
<th>If a seizure occurred within the past 12 months, reassess in 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If a seizure occurred more than 1 year ago, or if no further seizures are reported after the initial reassessment, reassess in 5 years</td>
</tr>
<tr>
<td></td>
<td>If no further seizures are reported during those 5 years, at the discretion of the Authority.</td>
</tr>
</tbody>
</table>
Information from health care providers

- Date of the last seizure
- Description of the type of seizure
- Whether a neurological assessment has been conducted and the results of the assessment
- Date that the provoking factor stabilized, resolved or was corrected
- Details of the driver’s treatment regime
- Opinion of treating physician on whether the driver is compliant with their treatment regime
- Opinion of treating physician on whether further seizures are likely. Depending on the nature of the provoking factor, the opinion of a neurologist may be required to determine the risk of further seizures.

17.6.2 Provoked seizures with no structural brain abnormality

This standard applies to drivers who have experienced provoked seizures caused by a:
- toxic illness
- adverse drug or alcohol reaction, and substance use disorder* is not diagnosed
- trauma, or
- other cause that is not associated with a structural brain abnormality.
 (for example psycho genec non epileptic (PNES))

* Note if substance use disorder is diagnosed, then 17.6.3 would apply

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>they have undergone a neurological assessment to determine the cause of the seizure, and epilepsy is not diagnosed</td>
</tr>
<tr>
<td></td>
<td>the provoking factor has stabilized, resolved, or been corrected, with or without treatment, and</td>
</tr>
<tr>
<td></td>
<td>the treating physician indicates that further seizures are unlikely</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>Routine</td>
</tr>
</tbody>
</table>
Information from health care providers
- Description of the type of seizure
- Whether a neurological assessment has been conducted and the results of the assessment
- Opinion of treating physician on whether the provoking factor has stabilized, resolved or been corrected
- Opinion of treating physician on whether further seizures are likely. Depending on the nature of the provoking factor, the opinion of a neurologist may be required to determine the risk of further seizures.

17.6.3 Alcohol Withdrawal Seizures

<table>
<thead>
<tr>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>All drivers eligible for a licence if</td>
</tr>
<tr>
<td>- the treating physician has confirmed that the cause of the seizure was alcohol withdrawal (i.e. the driver is not epileptic)</td>
</tr>
<tr>
<td>- they have undergone addiction treatment and have received a favourable report from an addiction counsellor,</td>
</tr>
<tr>
<td>- the criteria for licence reinstatement are met in accordance with the Substance Use Disorder Standard (see 15.6.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Follow up regularly with treating physician and comply with any prescribed treatment regime</td>
</tr>
<tr>
<td>- Cease driving and report to the authority and treating physician if driver has a seizure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Reassess in one year</td>
</tr>
<tr>
<td>- If no further seizures are reported after the initial reassessment, reassess in five years</td>
</tr>
<tr>
<td>- If no further seizures are reported during those five years, then routine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Description of the cause of the seizure</td>
</tr>
<tr>
<td>- Date of the last seizure</td>
</tr>
<tr>
<td>- Details of treatment regime</td>
</tr>
<tr>
<td>- Date of abstinence</td>
</tr>
<tr>
<td>- Whether the driver has undergone addiction treatment</td>
</tr>
</tbody>
</table>
• Report from an addiction counsellor and / or treating physician whether the driver is compliant

17.6.4 Single unprovoked seizure – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Complete neurological assessment has been conducted to determine the cause of the seizure, and epilepsy is not diagnosed, and</td>
</tr>
<tr>
<td></td>
<td>• CNS imaging and EEG results do not suggest an increased likelihood of seizure reoccurrence.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• If the seizure occurred within the past 12 months, reassess in one year</td>
</tr>
<tr>
<td></td>
<td>• If the seizure occurred more than one year ago, or if no further seizures are reported after the initial reassessment, reassess in five years</td>
</tr>
<tr>
<td></td>
<td>• If no further seizures are reported during those five years, then routine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Date of the seizure</td>
</tr>
<tr>
<td></td>
<td>• Description of the type of seizure</td>
</tr>
<tr>
<td></td>
<td>• Whether a neurological assessment has been conducted and the results of the assessment</td>
</tr>
</tbody>
</table>

17.6.5 Single unprovoked seizure – Commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been at least 12 months since the seizure occurred, and</td>
</tr>
<tr>
<td></td>
<td>• Complete neurological assessment has been conducted to determine the cause of the seizure, and epilepsy is not diagnosed, and</td>
</tr>
<tr>
<td></td>
<td>• CNS imaging and EEG results are satisfactory</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | None |
17.6.6 Epilepsy – Non-commercial drivers

This standard applies to non-commercial drivers who have been diagnosed with epilepsy, with the following exceptions:

- If the epileptic seizures only occur while the driver is asleep, or immediately after awakening, standard 17.6.7 applies.
- If the driver only experiences simple partial seizures, standard 17.6.8 applies.
- If the driver has had surgery for epilepsy, standard 17.6.9 applies.
- If the driver has changed effective medication, standard 17.6.10 applies.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• It has been 6 months since the seizure occurred with or without medication</td>
</tr>
<tr>
<td></td>
<td>• Waiting period may be reduced to no less than 3 months on neurologist’s recommendation if rationale is provided</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>Routine follows treatment regime and physician’s advice regarding prevention of seizures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Driver must cease driving and report to the authority and physician if has a seizure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Reassess in one year if a seizure occurred within the past 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Otherwise, routine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Date of the last seizure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Details of the driver’s treatment regime, including length of time the driver has been on antiepileptic medication</td>
</tr>
<tr>
<td></td>
<td>Opinion of treating physician on whether the driver is compliant with their treatment regime</td>
</tr>
</tbody>
</table>
17.6.7 *Epilepsy with seizures only while asleep or upon awakening – Non-commercial drivers*

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial driver eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 6 months since the last seizure OR,</td>
</tr>
<tr>
<td></td>
<td>• the driver is experiencing seizures but seizure pattern has been consistent for at least 1 year- and therefore no seizure free waiting period required</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	• Routinely follow treatment regime and physician’s advice regarding prevention of seizures, if the driver is treated
	• Routinely follow physician’s advice regarding continued monitoring of your seizures
	• Report to the authority and physician if the pattern of seizures changes

| Reassessment | • Routine |

Information from health care providers	• Description of the seizure pattern
	• Whether the seizure pattern has been consistent for at least 5 years
	• Details of the driver’s treatment regime
	• Opinion of treating physician on whether the driver is compliant with their treatment regime
17.6.8 Epilepsy with simple partial seizures – Non-commercial drivers

This standard applies to non-commercial drivers with epilepsy who only experience simple partial seizures (no impairment in level of consciousness), the symptoms of which do not impair their functional ability to drive.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• It has been 6 months since the last seizure OR,</td>
</tr>
<tr>
<td></td>
<td>• The driver is experiencing seizures but the seizure pattern has been consistent for at least 1 year - and therefore no seizure free waiting period required</td>
</tr>
<tr>
<td></td>
<td>• Favourable assessment from the treating physician or neurologist</td>
</tr>
<tr>
<td></td>
<td>• No impairment in level of consciousness or cognition</td>
</tr>
<tr>
<td></td>
<td>• No head or eye deviation with seizures</td>
</tr>
<tr>
<td></td>
<td>• The conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Routinely follow treatment regime and physician’s advice regarding prevention of seizures, if the driver is treated |
| | • Must report to the authority and physician if the symptoms of seizures change |

| Reassessment | • Routine |

Information from health care providers	• Description of the symptoms of the seizures
	• Whether the symptoms of the seizures have been consistent for at least 1 year
	• Details of the driver’s treatment regime
	• Opinion of treating physician on whether the driver is compliant with their treatment regime
17.6.9 Surgery for epilepsy – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have not had a seizure for 12 months after surgery</td>
</tr>
<tr>
<td></td>
<td>• taking anti-epileptic medication as directed by physician</td>
</tr>
<tr>
<td></td>
<td>• waiting period may be reduced to 6 months upon neurologist recommendation</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | Routinely follow treatment regime and physician’s advice regarding prevention of seizures. |
| | Cease driving and report to authority and physician if a seizure occurs. |

| Reassessment | At discretion of licencing authority. |

Information from health care providers	Date of last seizure
	Details of driver’s treatment regime
	Opinion of treating physician on whether the driver is compliant with their treatment regime

17.6.10 Surgery for Epilepsy – Commercial Drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have not had a seizure for 5 years after surgery with or without anti-epileptic medication</td>
</tr>
<tr>
<td></td>
<td>• waiting period may be reduced to 3 years upon neurologist/specialist recommendation</td>
</tr>
<tr>
<td></td>
<td>• conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | Routinely follow treatment regime and physician’s advice regarding prevention of seizures. |
| | Cease driving and report to authority and physician if a seizure occurs. |

| Reassessment | At discretion of licencing authority. |

Information from health care providers	Date of last seizure
	Details of driver’s treatment regime
	Opinion of treating physician on whether the driver is compliant with their treatment regime if applicable
17.6.11 *Epilepsy with medication change – Non-commercial drivers*

This standard applies to non-commercial drivers with epilepsy who undergo a prescribed change to, or withdrawal of, an effective antiepileptic medication. This standard only applies where the driver’s treatment was effective (i.e. their epilepsy was controlled) prior to the change to, or withdrawal from, medication. This means they should not have had a seizure for at least six months prior to the change or withdrawal of medication. If their treatment prior to the change was not effective, then guideline 17.6.6 applies.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 3 months since the change or withdrawal and they have not had a seizure during that time, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
<tr>
<td>Non-commercial drivers who have a seizure after a change to, or withdrawal from, antiepileptic medication eligible for a licence if</td>
<td>• they re-establish a previously effective treatment regime</td>
</tr>
<tr>
<td></td>
<td>• the treating physician indicates that further seizures are unlikely,</td>
</tr>
<tr>
<td></td>
<td>• it has been 3 months since the previously effective treatment regime was resumed and they have not had a seizure during that time</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | Routinely follow treatment regime and physician’s advice regarding prevention of seizures |
| | Cease driving and report to the authority and your physician if you have a seizure |

Reassessment	If a seizure occurred within the past 12 months, reassess in one year
	If no seizures occurred within the past 12 months, or if no seizures are reported after the initial reassessment, reassess in five years
	If no seizures are reported during those five years, then routine

Information from health care providers	Date of the medication change or withdrawal
	Date of the last seizure
	Details of the driver’s treatment regime
	Opinion of treating physician whether the driver is compliant with their treatment regime
Opinion of treating physician whether further seizures are likely

17.6.12 Epilepsy – Commercial drivers

This standard applies to commercial drivers, who have been diagnosed with epilepsy, except:

- whose seizure only occur while they are asleep or immediately after awakening, and (17.6.13)
- who have only simple partial seizures (no impairment in level of consciousness), the symptoms of which do not impair their functional ability to drive (17.6.14).

See guideline 17.6.15 for commercial drivers who meet this standard and then change medication.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• they have not had a seizure with or without medication for 5 years, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Routinely follows treatment regime and physician’s advice regarding prevention of seizures</td>
</tr>
<tr>
<td>• Cease driving and report to the authority and physician if a seizure occurs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Routine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Date of the last seizure</td>
</tr>
<tr>
<td>• Details of the driver’s treatment regime, including length of time the driver has been on or off antiepileptic medication</td>
</tr>
<tr>
<td>• Opinion of treating physician on whether the driver is compliant with their treatment regime</td>
</tr>
</tbody>
</table>
17.6.13 Epilepsy with seizures only while asleep or upon awakening - Commercial Drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the driver is experiencing seizures but the seizure pattern has been consistent for at least 5 years</td>
</tr>
<tr>
<td></td>
<td>• no prolonged postictal impairment in wakefulness</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	• Routinely follow treatment regime and physician’s advice regarding prevention of seizures, if the driver is treated
	• Routinely follow physician’s advice regarding continued monitoring of your seizures
	• Report to the authority and physician if the pattern of seizures changes

| Reassessment | • Routine |

Information from health care providers	• Description of the seizure pattern
	• Whether the seizure pattern has been consistent for at least 5 years
	• Details of the driver’s treatment regime
	• Opinion of treating physician on whether the driver is compliant with their treatment regime

17.6.14 Epilepsy with simple partial seizures - Commercial Drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been 5 years since the last seizure OR,</td>
</tr>
<tr>
<td></td>
<td>• the driver is experiencing seizures but the seizure pattern has been consistent for 3 years – and therefore no seizure free waiting period required</td>
</tr>
<tr>
<td></td>
<td>• favourable assessment from neurologist to drive</td>
</tr>
<tr>
<td></td>
<td>• no impairment in level of consciousness or cognition</td>
</tr>
<tr>
<td></td>
<td>• no head or eye deviation with seizures</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | • Routinely follow treatment regime and physician’s advice regarding prevention of seizures, if the driver is treated |
| | • Must report to the authority and physician if the symptoms of seizures change |
Reassessment

- Routine

Information from health care providers

- Description of the symptoms of the seizures
- Whether the symptoms of the seizures have been consistent for at least 1 year
- Details of the driver’s treatment regime
- Opinion of treating physician on whether the driver is compliant with their treatment regime

17.6.15 **Epilepsy with medication change - Commercial drivers**

This standard applies to commercial drivers with epilepsy who undergo a prescribed change to, or withdrawal of, an effective antiepileptic medication. This standard only applies where the driver’s treatment was effective (i.e. their epilepsy was controlled) prior to the change to, or withdrawal from, medication. This means they must first meet guideline 17.6.12 before this standard will apply.

STANDARD

Commercial drivers eligible for a licence if:
- it has been 6 months since the prescribed change or withdrawal and they have not had a seizure during that time, and
- the conditions for maintaining a licence are met

Commercial drivers who have a seizure after a prescribed change to, or withdrawal from antiepileptic medication are eligible for a licence if:
- it has been 6 months since the prescribed change or withdrawal and they have not had a seizure during that time
- they have re-established a previously effective treatment regime
- the treating physician indicates that further seizures are unlikely, and
- the conditions for maintaining a licence are met

Conditions for maintaining licence

- Routinely follow treatment regime and physician’s advice regarding prevention of seizures
- Cease driving and report to the authority and physician if seizure occurs

Reassessment

- Routine
<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Date of the medication change or withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of the last seizure</td>
<td></td>
</tr>
<tr>
<td>Details of the driver’s treatment regime</td>
<td></td>
</tr>
<tr>
<td>Opinion of treating physician on whether the driver is compliant with their treatment regime</td>
<td></td>
</tr>
<tr>
<td>Opinion of treating physician on whether further seizures are likely</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 18: Sleep disorders

18.1 About sleep disorders

Sleep disorders involve any difficulties related to sleeping, including:

- difficulty falling asleep (insomnia) or staying asleep
- falling asleep at inappropriate times
- excessive total sleep time,
- abnormal behaviours associated with sleep.

This chapter focuses on the most common forms of sleep disordered breathing - obstructive sleep apnea - and on narcolepsy.

In addition to sleep disorders, a number of other factors such as work schedules or lifestyle choices may result in inadequate nocturnal sleep. Regardless of the cause, the risks of excessive sleepiness for driving safety are similar.

Sleep disordered breathing

Sleep disordered breathing consists of three distinct clinical syndromes:

- obstructive sleep apnea-hypopnea syndrome (OSAHS): apnea-hypopnea caused by repeated closure of the throat or upper airway during sleep. This is the most common form of sleep disordered breathing. In the medical standards in this section, obstructive sleep apnea-hypopnea syndrome is referred to as OSA.

- central sleep apnea-hypopnea syndrome (CSAHS): includes types of apnea-hypopnea caused by a neurological problem that interferes with the brain’s ability to control breathing during sleep, as well as high altitude periodic breathing and apnea-hypopnea due to drug or substance abuse.

- sleep hypoventilation syndrome (SHVS): a type of sleep disordered breathing characterized by insufficient oxygen absorption during sleep. It usually occurs in association with restrictive lung disease in morbidly obese individuals, respiratory muscle weakness or obstructive lung disease such as COPD.

Obstructive sleep apnea-hypopnea syndrome (OSA)

With OSA, the tissue and muscles of the upper airway repetitively collapse during sleep, reducing or preventing breathing. As oxygen levels in the blood fall, arousal causes the airway to re-open. Although individuals with OSA often remain asleep, their sleep patterns are disrupted. These sleep disturbances result in excessive daytime sleepiness. Impairments in cognitive function are common in individuals with OSA and these may

29 Canadian Sleep Society. https://css-scs.ca/
include difficulties in attention, concentration, complex problem solving, and short-term recall of verbal and spatial information.

Sleep monitoring is used to confirm a diagnosis of OSA. The preferred test used in diagnosis is nocturnal polysomnography. This test involves monitoring a number of physiological functions, such as brain activity, respiration, heart activity and oxygenation of the blood, while an individual is sleeping. A diagnosis of sleep apnea is based on the apnea-hypopnea index (AHI), where apnea is defined as a cessation of airflow lasting at least 10 seconds and hypopnea is defined as a reduction in airflow with a decline in blood oxygen level lasting at least 10 seconds. Generally, an individual is diagnosed with sleep apnea if they have greater than 5 apnea/hypopnea episodes per hour of sleep.

There are a number of scales used to measure the severity of OSA. A scale based on the AHI describes the following levels of severity:

- Mild: 5 to 14 events per hour
- Moderate: 15 to 30 events per hour
- Severe: more than 30 events per hour.

Although nocturnal polysomnography is considered to be the best test for the diagnosis of OSA, a number of other tests may be used by sleep specialists to assist in evaluation or diagnosis. Overnight oximetry is similar to polysomnography, but only measures oxygen level and heart rate. Results from overnight oximetry alone are not considered adequate to diagnose OSA.

A number of tests are used to evaluate daytime sleepiness. These include the Maintenance of Wakefulness Test (MWT), the Multiple Sleep Latency Test (MSLT) and the Epworth Sleepiness Scale (ESS). MWT measures the level of daytime drowsiness based on how long a person can remain awake during the day under controlled conditions. The MSLT is similar to the MWT, but measures how long it takes a person to fall asleep when taking daytime naps, rather than how long they can stay awake. The ESS is a subjective test in which a person is asked to rate on a scale of 1 to 4 the likelihood that they would fall asleep in different situations, such as when watching TV, riding in a car or engaging in conversation.

Treatment options for OSA include:

- lifestyle changes such as weight loss, alcohol abstinence or change in sleep position
- the use of oral appliances
- the use of a nasal continuous positive airway pressure (CPAP) device,
- bariatric surgery (for morbidly obese individuals), and
- in rare cases, corrective upper airway surgery.

CPAP is the most effective treatment, and the only one which has been shown to reduce the risk of motor vehicle crashes. A CPAP machine blows heated, humidified air through a short tube to a mask worn by the individual while sleeping. As the individual breathes, air pressure from the CPAP machine holds the nose, palate and throat tissues open.
An immediate reduction (usually within 2 weeks) in daytime sleepiness is often reported with CPAP treatment, although studies indicate that approximately 6 weeks of treatment are required for maximum improvement in symptoms. Medical consensus supports the resumption of driving after 2 weeks of treatment. Estimates of compliance with CPAP treatment vary depending on how it is measured. Subjective rates of compliance based on self-report are higher than objectively determined rates. Using objective measures, a 1993 study found that 46% of individuals were acceptably compliant with their CPAP treatment. The study defined acceptable compliance as the use of the CPAP machine for at least four hours per night for more than 70% of the observed nights.

OSA Indicators

During periodic medical assessments it is essential the examining physician screen for sleep disorders risk factors. The FMCSA Expert Panel Recommendations on Obstructive Sleep Apnea and Commercial Motor Vehicle Driver Safety (2008) reflected the following on OSA.

Symptoms suggestive of OSA:

- Chronic loud snoring
- Witnessed apneas or breathing pauses during sleep
- Daytime sleepiness

Risk factors for OSA:

- Male
- Advancing age
- BMI>28 kg/m² (BMI - Body Mass Index)
- Small jaw
- Large neck size (>17 inches male, >15.5 inches female)
- Small airway
- Family history of OSA

Conditions associated with OSA:

- HBP (High Blood Pressure) or HTA (Hypertension Arterial)
- Type 2 diabetes
- Hypothyroidism
OSA Assessment

Patients with severe OSA, who have been involved in a crash in which their medical condition was a causal factor, are at high risk of having more accidents if they are not treated successfully. Even without having experienced a crash, severe sleep apnea has been identified as a factor that increases crash risk. Consequently, commercial drivers who have experienced a crash associated with falling asleep, or report they have experienced excessive sleepiness while driving, should be advised to stop driving immediately pending completion of sleep studies and effective treatment.

Furthermore, licensing agencies must decide if commercial drivers with OSA risk factors associated with the symptoms listed are fit to hold class 1, 2, 3 or 4 driver licences pending a sleep expert assessment given current waiting times for sleep studies.

Treated OSA is subject to annual medical review by the licensing agency for all Class 1, 2, 3 and 4 driver licence holders.

Narcolepsy

Narcolepsy is a chronic neurological disorder in which the brain is unable to regulate sleep-wake cycles normally. It is characterized by excessive daytime sleepiness and may also cause cataplexy (abrupt loss of muscle tone), hallucinations and sleep paralysis. There is no known cure. The symptoms of narcolepsy relevant to driving are sleepiness and cataplexy.

The excessive daytime sleepiness of narcolepsy comprises both a background feeling of sleepiness present much of the time and a strong, sometimes irresistible, urge to sleep recurring at intervals through the day. This desire is heightened by conducive or monotonous circumstances, but naps at inappropriate times, such as during meals, are characteristic. The naps associated with narcolepsy usually last from minutes to an hour and occur a few times each day. Potential secondary symptoms related to sleepiness may include visual blurring, diplopia and cognitive impairment. Cognitive impairment may include difficulties with attention and memory.

Cataplexy refers to an abrupt loss of skeletal muscle tone. It is estimated that 60% to 90% of individuals with narcolepsy experience cataplexy. During a cataplexy attack, which can last up to several minutes and occur several times a day, an individual remains conscious but is unable to move. Generalized attacks can cause an individual to completely collapse, although the muscles of the diaphragm and the eyes remain unaffected. Partial attacks, which affect only certain muscle groups, are more common than generalized attacks. Laughter or humorous events are a common trigger of cataplexy attacks, although anger, embarrassment, surprise or sexual arousal can also trigger an attack.

As there is no cure, treatment for narcolepsy is focussed on the control of sleepiness and cataplexy where present. Medications used for treatment may include:

- stimulants such as Modafinil (Alertec™)
- tricyclic antidepressants
• selective serotonin reuptake inhibitors
• venlafaxine (Effexor™), or
• reboxetine (Edronax™).

See Chapter 15, Psychotropic Drugs, for more information about medications and driving.

18.2 Prevalence

OSA affects at least 2% of women and 4% of men. It is more prevalent among middle aged and older individuals and those who are obese. It commonly remains undiagnosed, with estimates suggesting that 93% of women and 82% of men with moderate to severe sleep apnea are undiagnosed.

Canadian data on the prevalence of narcolepsy are lacking. Research in the United States indicates a prevalence rate of 47 per 100,000 individuals (.05%). It is more common in men than in women.

18.3 Sleep disorders and adverse driving outcomes

Numerous studies have investigated the relationship between OSA and adverse driving outcomes. OSA may cause daytime drowsiness and reduced concentration that are symptoms that can negatively affect driving safely. OSA is also of special concern for the commercial driver who often drives long distances with few breaks and whose work schedule may not be conducive to healthy sleep hygiene.

The majority of studies indicate that individuals with OSA have a 2 to 4 times greater risk for a crash, and the crashes result in more severe injuries. Although numerous tests are available to measure daytime sleepiness, the research also indicates that measures of daytime sleepiness and the severity of sleep apnea are not consistent predictors of impairments in driving performance.

Unlike OSA, there are few studies on narcolepsy and adverse driving outcomes. Although limited, this research suggests that narcolepsy is also associated with elevated crash rates.

18.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSA</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>All – sudden incapacitation</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Narcolepsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Type of driving impairment and assessment approach</td>
<td>Primary functional ability affected</td>
<td>Assessment tools</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cognitive – reduced alertness</td>
<td></td>
</tr>
<tr>
<td>Persistent impairment:</td>
<td>Functional assessment</td>
<td>Cognitive</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional Assessments</td>
</tr>
</tbody>
</table>

18.5 **Compensation**

Drivers with sleep disorders are not able to compensate for their impairment.

Recently, a number of warning systems for drowsy drivers have been developed. These systems are designed to detect drowsiness by monitoring the driver’s eye movement, head movement or other physical activity, or by sensing when a vehicle is drifting on the road. When drowsiness is suspected, a warning system alerts the driver. These systems are in various stages of development and production.

Research on the effectiveness of drowsy driving warning systems is limited. The existing research indicates that these technologies show promise as a means to warn drivers of fatigue or drowsiness. However, it is recognized that alertness is a complex phenomenon, and no single measure alone may be sensitive and reliable enough to quantify driver fatigue. Further research and development is required before the use of these warning systems can be applied in driver licensing decisions.

18.6 **Guideline for assessment**

18.6.1 **OSA – All drivers**

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• has untreated obstructive sleep apnea with an AHI < 30, and does not admit to daytime sleepiness,</td>
</tr>
<tr>
<td></td>
<td>• Drivers with severe obstructive sleep apnea (AHI ≥ 30) are disqualified from driving unless the condition is successfully treated, OR the driver has been assessed by a sleep specialist who is of the opinion that there is a low risk of a sleep related crash</td>
</tr>
<tr>
<td></td>
<td>• Any driver with OSA, regardless of severity, who has experienced within the previous 5 years a crash associated with falling asleep or sleepiness while driving must provide evidence that the OSA is successfully treated.</td>
</tr>
</tbody>
</table>
Conditions for maintaining licence

- All commercial drivers must file periodic mandatory medical reports to assess their fitness to hold a commercial licence.
- Non-commercial drivers are assessed for fitness to drive on a case by case basis, taking into account the treating physician’s specific recommendations.
- Cease driving and report any episodes of sleep at the wheel to the treating physician and the authority.

Reassessment

- At the discretion of the authority for non-commercial drivers,
- Annual medical review for commercial drivers with OSA.

Information from health care providers

- History of sleep at the wheel within the past five years
- Opinion of treating physician whether the driver understands the nature of the condition and the potential impact on driving

Rationale

The primary concerns with OSA are daytime sleepiness (risk of sleep while driving) and persistent cognitive impairment. Determining who is at risk of adverse driving outcomes due to daytime sleepiness is problematic. Because existing measures of daytime sleepiness and the severity of sleep apnea are not consistent predictors of impairments in driving performance, the standard looks to driver history of sleep at the wheel for identifying current risk of sleep while driving. The standard also emphasizes the responsibility of the driver to be attentive to the risk for daytime sleepiness.30

18.6.2 Narcolepsy – Non-commercial drivers

STANDARD

Non-commercial drivers eligible for a licence if

- there have been no daytime sleep attacks or cataplexy, with or without treatment, during the past 12 months.
- Earlier re-licensing may be considered upon favourable recommendation from sleep specialist

Conditions for maintaining licence

None

Reassessment

- At the discretion of the Authority

30Canadian Sleep Society. https://css-scs.ca/
Information from health care providers

- Type of treatment
- Whether there have been daytime sleep attacks within the past 12 months
- Whether there have been episodes of cataplexy within the past 12 months

Rationale

The general approach of the standard for drivers with narcolepsy is that attacks must be controlled as a prerequisite to driving. Where a driver is treated, the standard includes a requirement for an attack-free period to establish the likelihood that:

- a therapeutic drug level has been achieved and maintained
- the drug being used will prevent further attacks, and
- there are no side effects that may affect the driver’s ability to drive safely.

The episodic risk of a sleep attack or cataplexy while driving is addressed in the requirement for a 12 month period without an episode prior to driving. The length of this no driving period is based on consensus medical opinion in Canada.

18.6.3 Narcolepsy – Commercial drivers

This standard applies to drivers who are diagnosed with narcolepsy

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers generally not eligible for a licence. May be eligible if:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• demonstrated effective treatment</td>
</tr>
<tr>
<td></td>
<td>• sleep specialist supports driving commercial vehicles</td>
</tr>
<tr>
<td></td>
<td>• there have been no daytime sleep attacks or cataplexy during the last 12 months</td>
</tr>
<tr>
<td></td>
<td>• Earlier re-licensing may be considered upon favourable recommendation from a sleep specialist</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>• remain under regular medical supervision</td>
</tr>
<tr>
<td>• do not drive commercial vehicle for long hours, overnight or on irregular shifts.</td>
</tr>
<tr>
<td>• A jurisdiction may consider having a sleep specialist has review and approve the driver’s work schedule and have a sleep specialist review and support driving commercial vehicles</td>
</tr>
<tr>
<td>Reassessment</td>
</tr>
<tr>
<td>------------------</td>
</tr>
</tbody>
</table>
| **Specific information required** | • Type of treatment
• MSLT demonstrating effective treatment
• Whether there have been daytime sleep attacks or episodes of cataplexy within past 12 months. |
| **Rationale** | Consensus medical opinion in Canada indicates that the risks from increased driving exposure associated with commercial driving are such that drivers with narcolepsy may not drive. However CMA Driver’s Guide 8th Ed also indicates people with narcolepsy, who are able to maintain a regular sleep-wake cycle, may be able to drive commercial vehicles during the day, over short routes. The recommendation for licensing commercial drivers with narcolepsy in the CMA Guide is a consensus recommendation based on clinical grounds. |
Chapter 19: Syncope

19.1 About syncope

Syncope refers to a partial or complete loss of consciousness, usually resulting from a temporary reduction in blood flow to the brain. The onset of syncope is relatively rapid and recovery is generally prompt, spontaneous and complete. The non-medical term for syncope is fainting.

Syncope has many different causes, including cardiovascular disease and neurological disorders. In some cases, no underlying cause can be found.

The following are the major types of syncope:

• vasovagal syncope
• postural syncope, and
• cardiac syncope.

The most common types of syncope are vasovagal (neurocardiogenic) and cardiac syncope.

Vasovagal syncope

Vasovagal or neurocardiogenic syncope refers to syncope that is triggered by an exaggerated and inappropriate nervous system response to a particular stimulus. The response is characterized by alterations in heart rate and blood flow, with a subsequent reduction in blood pressure. The stimulus can be any of a wide range of events such as:

• dehydration
• intense emotional stress
• anxiety
• fear
• pain
• hunger, or
• the use of alcohol or drugs.

Stimuli can also include forceful coughing, turning of the neck or wearing a tight collar (carotid sinus hypersensitivity), or urinating (micturition syncope).

Postural syncope

Postural syncope is syncope that results from a sudden drop in blood pressure immediately after standing or sitting up. It can be a side-effect of some medications or may be caused by dehydration or medical conditions such as Parkinson’s disease.

Cardiac syncope

Cardiac syncope refers to syncope caused by cardiac conditions such as:
• valvular heart disease
• chronic heart failure, or
• arrhythmias (bradycardias or tachycardias).

Cardiac arrhythmias are the most common cause of cardiac syncope.

19.2 Prevalence

The prevalence of syncope is difficult to determine. One study reported that 3% of males and 3.5% of females had at least one episode of syncope over a 26 year period. The Canadian Cardiovascular Society estimates that syncope may affect as many as 50% of Canadians at some point during their lives. Higher rates of syncope are reported in older individuals.

19.3 Syncope and adverse driving outcomes

Few studies have considered the relationship between syncope and driving. Of those that have, most indicate a relationship between syncope and impaired driving performance for at least some groups that experience syncope.

19.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syncope</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>All – sudden incapacitation</td>
<td>Medical assessments</td>
</tr>
</tbody>
</table>

Syncope causes an episodic impairment of all the functions necessary for driving.

19.5 Compensation

As syncope causes an episodic impairment of the functions necessary for driving, compensation does not apply.
Guideline for Assessment

The following table lists the standards applicable to various types of syncope.

<table>
<thead>
<tr>
<th>Type of syncope</th>
<th>Standards for non-commercial drivers</th>
<th>Standards for commercial drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single (one episode within a 12 month period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical vasovagal syncope is a vasovagal syncope that occurs when standing and is preceded by warning signs that are sufficient to allow a driver to pull off the road before losing consciousness.</td>
<td>19.6.1</td>
<td>19.6.8</td>
</tr>
<tr>
<td>Unexplained</td>
<td>19.6.2</td>
<td>19.6.10</td>
</tr>
<tr>
<td>Atypical vasovagal syncope is a vasovagal syncope that occurs in the sitting position or is not preceded by warning signs that are sufficient to allow a driver to pull off the road before losing consciousness.</td>
<td>19.6.2</td>
<td>19.6.10</td>
</tr>
<tr>
<td>Recurrent (two or more episodes within a 12 month period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversible cause</td>
<td>19.6.3</td>
<td>19.6.3</td>
</tr>
<tr>
<td>Diagnosed and treated cause (e.g. pacemaker for bradycardia)</td>
<td>19.6.4</td>
<td>19.6.9</td>
</tr>
<tr>
<td>Typical vasovagal (see definition above)</td>
<td>19.6.5</td>
<td>19.6.10</td>
</tr>
<tr>
<td>Situational with an avoidable trigger (e.g. micturition syncope, defecation syncope)</td>
<td>19.6.6</td>
<td>19.6.6</td>
</tr>
<tr>
<td>Unexplained</td>
<td>19.6.7</td>
<td>19.6.10</td>
</tr>
<tr>
<td>Atypical vasovagal (see definition above)</td>
<td>19.6.7</td>
<td>19.6.10</td>
</tr>
</tbody>
</table>
The following table summarizes the syncope standards and waiting periods

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non Commercial Driver Class 5-8</th>
<th>Commercial Driver Class 1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single episode of typical vasovagal syncope*</td>
<td>No restriction</td>
<td></td>
</tr>
<tr>
<td>Diagnosed and treated cause e.g. permanent pacemaker for bradycardia</td>
<td>1 week</td>
<td>1 month</td>
</tr>
<tr>
<td>Reversible cause e.g. hemorrhage, dehydration</td>
<td>Successful treatment of underlying condition</td>
<td></td>
</tr>
<tr>
<td>Situational syncope with avoidable trigger e.g. micturition syncope, defecation syncope</td>
<td>1 week</td>
<td></td>
</tr>
<tr>
<td>- Single episode of unexplained syncope</td>
<td>1 week</td>
<td>12 months</td>
</tr>
<tr>
<td>- Recurrent (within 12 months) vasovagal syncope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent episode of unexplained syncope (within 12 months)</td>
<td>3 months</td>
<td>12 months</td>
</tr>
<tr>
<td>Syncope due to documented tachyarrhythmia, or inducible tachyarrhythmia at EPS</td>
<td>Refer to Cardiac Section on Syncope</td>
<td></td>
</tr>
</tbody>
</table>

* No restriction is recommended unless the syncope occurs in the sitting position or if it is determined that there may be an insufficient prodrome to pilot the vehicle to the roadside to a stop before losing consciousness. If vasovagal syncope is atypical, the restrictions for “unexplained” syncope apply. **EPS: Electrophysiology study**

Rationale for all syncope standards

These guidelines are based primarily on recommendations contained in the final report of the 2003 Canadian Cardiovascular Society (CCS) Consensus Conference Assessment of the Cardiac Patient for Fitness to Drive and Fly. When applying these standards, the CCS indicates that waiting periods may be modified based on individual factors such as length of any reliable warning symptoms (prodrome), reversible or avoidable precipitating factors, and position from which the individual experiences syncope.
19.6.1 Single episode of typical vasovagal syncope – Non-commercial drivers

Typical vasovagal syncope is a vasovagal syncope that occurs when standing and is preceded by warning signs that are sufficient to allow a driver to pull off the road before losing consciousness.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Description of the type of syncope</td>
</tr>
</tbody>
</table>

19.6.2 Single episode of unexplained syncope or atypical vasovagal syncope – Non-commercial drivers

Atypical vasovagal syncope is a vasovagal syncope that occurs in the sitting position or is not preceded by warning signs that are sufficient to allow a driver to pull off the road before losing consciousness.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>• it has been at least 1 week since the last episode of syncope, and • the conditions for maintaining a licence are met</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Report to the authority and your physician if you have another episode of syncope</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Reassess in one year if an episode occurred within the past 12 months • Otherwise, routine</td>
</tr>
<tr>
<td></td>
<td>• Description of the type of syncope</td>
</tr>
<tr>
<td></td>
<td>• Date of the last episode of syncope</td>
</tr>
</tbody>
</table>
19.6.3 Syncope with a reversible cause

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the cause has been successfully treated, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | Report to the authority and your physician if you have another episode of syncope |

| Reassessment | Routine, unless reassessment is required because of the underlying medical condition or treatment |

| Information from health care providers | Description of the cause of the syncope |
| | Opinion of the treating physician whether the treatment was successful |

19.6.4 Syncope with a diagnosed and treated cause – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been at least one week since successful treatment, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | Report to the authority and your physician if you have another episode of syncope |

| Reassessment | Routine, unless reassessment is required because of the underlying medical condition or treatment |

Information from health care providers	Description of the cause of the syncope
	Date of treatment
	Opinion of the treating physician whether the treatment was successful
19.6.5 *Recurrent typical vasovagal syncope – Non-commercial drivers*

This guideline applies to non-commercial drivers who have had two or more episodes of typical vasovagal syncope within a 12 month period.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Reassess in one year if an episode occurred within the past 12 months</td>
</tr>
<tr>
<td></td>
<td>• Otherwise, routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Description of the type of syncope</td>
</tr>
<tr>
<td></td>
<td>• Date of the last episode</td>
</tr>
</tbody>
</table>

19.6.6 *Recurrent situational syncope with an avoidable trigger*

This guideline applies to drivers who have had two or more episodes of situational syncope with an avoidable trigger (e.g. micturition syncope, defecation syncope) within a 12 month period.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Description of the type of syncope</td>
</tr>
<tr>
<td></td>
<td>• Date of the last episode</td>
</tr>
</tbody>
</table>
19.6.7 *Recurrent atypical vasovagal or recurrent unexplained syncope – Non-commercial drivers*

This guideline applies to non-commercial drivers who have had two or more episodes of atypical vasovagal syncope, or unexplained syncope within a 12 month period.

Atypical vasovagal syncope is a vasovagal syncope that occurs in the sitting position or is not preceded by warning signs that are sufficient to allow a driver to pull off the road before losing consciousness.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been at least three months since the last episode of syncope, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>• Report to the authority and your physician if you have another episode of syncope</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Reassess in one year if an episode occurred within the past 12 months</td>
</tr>
<tr>
<td></td>
<td>• Otherwise, routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Description of the type of syncope</td>
</tr>
<tr>
<td></td>
<td>• Date of the last episode of syncope</td>
</tr>
</tbody>
</table>
19.6.8 *Single episode of typical vasovagal syncope – Commercial drivers*

This guideline applies to commercial drivers who have had a single episode of typical vasovagal syncope within a 12 month period.

Typical vasovagal syncope is a vasovagal syncope that occurs when standing and is preceded by warning signs that are sufficient to allow a driver to pull off the road before losing consciousness.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>Report to the authority and your physician if you have another episode of syncope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>• Routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>• Description of the type of syncope</td>
</tr>
</tbody>
</table>

19.6.9 *Syncope with a diagnosed and treated cause – Commercial drivers*

This guideline applies to commercial drivers who have syncope with a diagnosed and treated cause (e.g. pacemaker for bradycardia).

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been at least one month since successful treatment, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

Conditions for maintaining licence	• Report to the authority and your physician if you have another episode of syncope
Reassessment	• Routine, unless reassessment is required because of the underlying medical condition or treatment
Information from health care providers	• Description of the cause of the syncope
	• Date of treatment
	• Opinion of the treating physician whether the treatment was successful
19.6.10 *Single or recurrent unexplained, single or recurrent atypical vasovagal, or recurrent typical vasovagal syncope – Commercial drivers*

This standard applies to commercial drivers who have had:
- single or recurrent atypical vasovagal syncope
- single or recurrent unexplained syncope, or
- recurrent typical vasovagal syncope

within a 12 month period.

Typical vasovagal syncope is a vasovagal syncope that occurs when standing and is preceded by warning signs that are sufficient to allow a driver to pull off the road before losing consciousness.

Atypical vasovagal syncope is a vasovagal syncope that occurs in the sitting position or is not preceded by warning signs that are sufficient to allow a driver to pull off the road before losing consciousness.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>it has been at least 12 months since the last episode of syncope, and</td>
</tr>
<tr>
<td></td>
<td>the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | Routinely follow your treatment regime and physician’s advice regarding prevention of syncope |
| | Report to the authority and your physician if you have another episode of syncope |

| Reassessment | Reassess in one year |
| | After initial reassessment, routine |

Information from health care providers	Description of the type of syncope
	Date of the last episode of syncope
	Opinion of treating physician whether the driver is compliant with the treatment regime and the physician’s advice regarding prevention of syncope
Chapter 20: Traumatic brain injury

20.1 About traumatic brain injury

Traumatic brain injury (TBI) is a nondegenerative, noncongenital insult to the brain from an external mechanical force, possibly leading to permanent or temporary impairment of cognitive, physical and psychosocial functions, with an associated diminished or altered state of consciousness. The leading causes of TBI are falls and motor vehicle crashes.

Descriptions of the severity of a TBI reflect the length of time a person is unconscious or lacks awareness of their environment. Mild TBI indicates only a brief change in mental status or consciousness, while severe TBI describes an extended period of unconsciousness or amnesia after the injury.

TBI can result in a wide range of impairments, which will vary depending on the severity and location of the injury, and the age and general health of the injured person. Possible sensory impairments include:

- visual field deficits
- visual neglect
- diplopia, and
- loss of sensation or hearing.

Possible motor impairments include paralysis, paresis (partial loss of movement or impaired movement) and slowed reaction times. Possible cognitive impairments include deficits in:

- attention
- memory
- executive functioning
- processing speed, and
- visuo-spatial abilities, including visual memory.

Behavioural impairments are common, including disorders affecting mood and impulse control. Sleep disturbances, sleep apnea and fatigue are also commonly reported. TBI is also associated with epilepsy.

Anosognosia (unawareness of impairment) is common in individuals with TBI, particularly in those with moderate to severe TBI, and is of particular concern for driving. Research suggests that anosognosia is more frequently associated with cognitive and behavioural impairments than with physical deficits.
20.2 Prevalence

Rates of incidence and prevalence of TBI are difficult to determine due to a lack of uniformity in definitions and reporting methods. Canadian data suggest that the overall prevalence of TBI is 62.3 per 100,000 adults. Rates were highest in the 45 to 64 year old age range, three times the rate of those in the 15 to 24 year old range.

20.3 Traumatic brain injury and adverse driving outcomes

Numerous studies have examined the relationship between TBI and driving outcomes. Although few studies have examined crash rates, the existing research indicates higher rates of crashes and traffic violations for those who have experienced a TBI. Notably, studies indicate that approximately 50% of those experiencing a TBI will not resume driving after the TBI. Research examining road test results indicates that approximately 30% of individuals who have experienced a TBI will fail a subsequent road test.

20.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traumatic brain injury</td>
<td>Persistent impairment: Functional assessment</td>
<td>Variable – cognitive, motor or sensory</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>Variable – sudden impairment (epilepsy)</td>
<td>Medical assessments</td>
</tr>
</tbody>
</table>

Traumatic brain injury may result in a persistent cognitive, motor or sensory impairment, or an episodic impairment (epilepsy), or both.

20.5 Compensation

Drivers who have experienced a persistent impairment of motor or sensory function may be able to compensate. An occupational therapist, driver rehabilitation specialist, driver examiner or other medical professional may recommend specific compensatory vehicle modifications or restrictions based on an individual functional assessment.

Some examples of compensatory mechanisms are shown in the following table.

<table>
<thead>
<tr>
<th>Motor impairment</th>
<th>Sensory (vision) impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Steering wheel spinner knob</td>
<td>• Scanning horizon more frequently</td>
</tr>
<tr>
<td>• Restriction to automatic transmission or power-assisted brakes</td>
<td>• Turning head 90° to maximize area scanned</td>
</tr>
<tr>
<td></td>
<td>• Large left and right side mirrors</td>
</tr>
</tbody>
</table>
20.6 Guidelines for assessment

20.6.1 Traumatic brain injury

If a driver has epilepsy as a result of a TBI, also see the standards in Chapter 17.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• movement and strength are sufficient to perform the functions necessary for driving</td>
</tr>
<tr>
<td></td>
<td>• cognitive and visual functions necessary for driving are not impaired</td>
</tr>
<tr>
<td></td>
<td>• any pain associated with the condition, and any treatment for the condition, do not impair the functional abilities necessary for driving</td>
</tr>
<tr>
<td></td>
<td>• where required, a functional assessment indicates that the driver is able to compensate for any loss of functional ability necessary for driving, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>Only drive vehicles that have the permitted modifications and devices required to compensate for functional impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>Routine</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Whether the driver suffers from epilepsy as a result of the TBI. See the standards under Chapter 17 if epilepsy is present.</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Opinion of treating physician on whether the driver has a loss of movement or strength that may affect functional ability to drive</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Opinion of treating physician on whether pain or treatment may adversely affect functional ability to drive</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Opinion of treating physician on whether the driver suffers from diplopia and/or a visual field deficit that may affect functional ability to drive. See the standards under Chapter 22 if the treating physician indicates that either of these conditions may be present.</td>
</tr>
<tr>
<td>Information from health care providers</td>
<td>Where required, the results of a functional assessment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale</th>
<th>The potential functional impairments associated with traumatic brain injury are variable.</th>
</tr>
</thead>
</table>
Chapter 21: Vestibular disorders

21.1 About vestibular disorders

The vestibular system - or balance system - is a sensory apparatus localized in the inner ears. It provides information to the nervous system about a person’s movement and orientation in space. Vestibular input contributes to:

- control of balance
- gaze stabilization so that a person can see clearly while moving, and
- spatial orientation so that a person knows their position with reference to gravity.

Vestibular disorders may result in:

- vertigo
- dizziness
- disturbed vision such as involuntary eye movement, and
- illusory movement of the visual world as a result of head movement.

A hallmark of vestibular disorders is vertigo, a term that refers to the sensation of spinning or whirling resulting from a disturbance in balance (equilibrium). Most commonly an attack of vertigo generally lasts less than one minute (30 seconds is typical) but it may last up to 60 minutes. A small number of people may experience vertigo lasting as long as 24 hours and an even smaller number may experience vertigo lasting up to, or beyond, 30 days.

Disorders of the vestibular system are classified as either peripheral or central.

Peripheral vestibular disorders

Peripheral disorders are characterized by episodic fluctuating symptoms; the dominant symptom is ‘true spinning vertigo’, that is the sensation of motion when no motion is occurring relative to earth’s gravity. Peripheral vestibular disorders typically occur as a single acute episode or as recurrent acute episodes. However, complete bilateral hypofunction may result in severe and constant disequilibrium and motion sensitivity.

The most common peripheral vestibular disorders and the typical duration of an episodic event are shown in the following table.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>benign paroxysmal positioning vertigo (BPPV)</td>
<td>20-30 seconds</td>
</tr>
<tr>
<td>vestibular neuronitis (labyrinthitis)</td>
<td>Tends to be single attack lasting days to weeks</td>
</tr>
<tr>
<td>Meniere’s Disease</td>
<td>20 minutes – 24 hours</td>
</tr>
</tbody>
</table>
Less common peripheral vestibular disorders are described in the following table.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop Attacks (Tumarkin’s Otolithic Crisis)</td>
<td>Sudden, spontaneous fall to the ground without prior warning</td>
</tr>
<tr>
<td>Complete bilateral vestibular hypofunction (absence of function)</td>
<td>May result in severe and constant disequilibrium and motion sensitivity</td>
</tr>
</tbody>
</table>

Central vestibular disorders

Central vestibular disorders generally arise from underlying persistent medical conditions. Because of this, they are more likely to produce prolonged continuous non-specific dizziness. They are characterized by difficulty in interpretation of vestibular, visual and proprioceptive (the unconscious perception of movement and spatial orientation arising from stimuli within the body itself) inputs. Gaze stabilization and posture during locomotion may also be affected.

Common persistent medical conditions that can cause persistent central vestibular dysfunction are:

- cerebrovascular disease
- cervical vertigo
- epilepsy
- multiple sclerosis
- normal pressure hydrocephalus
- paraneoplastic syndromes (a response to the effects of a tumour in the body), and
- traumatic brain injury.

Common episodic medical conditions that are not related to structural brain disease but that may cause central vestibular disorders, and typical episode duration, are shown in the following table.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>migraines</td>
<td>a few seconds to hours</td>
</tr>
<tr>
<td>Psychogenic vertigo/anxiety (hyperventilation syndrome)</td>
<td>a few seconds to hours</td>
</tr>
</tbody>
</table>
21.2 Prevalence

Peripheral vestibular disorders are more common than central vestibular disorders.

Age-related decrements in vestibular function are well documented and are likely due to degeneration at both the central and peripheral level. BPPV is reported as a common underlying cause of impairments in balance with aging.

A 2005 study on the frequency of moderate or severe vertigo and dizziness reported that 36.2% of women and 22.4% of men had experienced vertigo or dizziness at some point in their life.

One study identified that 32.5% of people with Meniere’s disease developed drop attacks (Tumarkin’s otolithic crisis); the attacks typically occurred in a flurry during a period of 1 year or less. No patient in the study required treatment for the drop attacks. Most people with this have a spontaneous remission of the drop attacks.

21.3 Vestibular disorders and adverse driving outcomes

The evidence linking vestibular disorders with adverse driving outcomes is weak because there has been little empirical research in this area. Nonetheless driving ability is dependent on the normal functioning of the vestibular mechanism to sense movement and position.

In subjective studies where drivers with vestibular disorders were asked about driving, driving difficulties were commonly reported and included a wide range of difficulties including driving in the rain, at night, pulling in and out of parking spaces, changing lanes, and freeway and rush hour driving.

In one study, 20-40% of drivers reported that they had had to pull off the road while driving due to vertigo. In a different study, 43% indicated that they had felt dizzy while driving; only 27% indicated that they ‘always’ or ‘usually’ got a warning that a dizzy spell was about to occur, with more than 1/3 indicating that they ‘rarely’ or ‘never’ get warnings. Of those who did get warnings, 56% indicated that there was less than a 5-second interval between the warning and the dizzy spell.
21.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestibular disorders resulting in episodic impairment, including:</td>
<td>Episodic impairment: Medical assessment – likelihood of impairment</td>
<td>Sensorimotor</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>• migraines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• psychogenic vertigo/anxiety (hyperventilation syndrome)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• benign paroxysmal positioning vertigo (BPPV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Meniere’s Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• vestibular neuritis (labyrinthitis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Drop Attacks (Tumarkin’s Otolithic Crisis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodic impairment: Medical assessment</td>
<td>Cognitive</td>
<td></td>
<td>Medical assessments</td>
</tr>
<tr>
<td>Persistent impairment: Functional assessment</td>
<td>Sensorimotor</td>
<td></td>
<td>Functional assessment</td>
</tr>
<tr>
<td>Persistent impairment: Functional assessment</td>
<td>Sensorimotor</td>
<td></td>
<td>Functional assessment</td>
</tr>
<tr>
<td>Persistent impairment: Functional assessment</td>
<td>Sensorimotor</td>
<td></td>
<td>Functional assessment</td>
</tr>
<tr>
<td>Vestibular disorders resulting in persistent impairment, including:</td>
<td>Persistent impairment: Medical assessment</td>
<td>Cognitive</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>• complete bilateral vestibular hypofunction (absence of function), or</td>
<td>Persistent impairment: Medical assessment</td>
<td>Cognitive</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>• vestibular disorder resulting from an underlying persistent medical</td>
<td>Persistent impairment: Medical assessment</td>
<td>Cognitive</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>condition.</td>
<td>Persistent impairment: Medical assessment</td>
<td>Cognitive</td>
<td>Medical assessments</td>
</tr>
<tr>
<td>The functional effects associated with vestibular disorders can occur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suddenly and with sufficient severity to make safe driving of any type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of vehicle impossible.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>People with vestibular disorders become disoriented more easily by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extraneous visual stimuli or visual noise. This means that drivers are</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>more likely to have difficulty driving in reduced visual conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>such as driving at night or in the rain.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid head movements are also likely to elicit vertigo in people with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vestibular disorders. This means that tasks such as parking a car,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manoeuvring in a parking space, lane maintenance and lane changes, and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>entering traffic may be risk factors for the onset of vertigo.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research also indicates that damage to the vestibular system results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in cognitive deficits in people with both peripheral and central</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vestibular disorders. People with vestibular disorders exhibit a range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of cognitive deficits including those that are spatial and non-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
spatial. The cognitive deficits do not appear to be related to any particular episode of vertigo or dizziness and the deficits may occur even in those people who have no symptoms of dizziness or postural deficits.

Central vestibular disorders

The majority of central vestibular disorders have a persistent impact on driving because they arise from underlying persistent medical conditions. However, two common causes of central vestibular disorders - migraines and hyperventilation syndrome - are episodic in nature with short disease duration.

Peripheral vestibular disorders

Peripheral vestibular disorders are generally more episodic with, in general, shorter disease duration. Drivers, however, with complete bilateral vestibular hypofunction (absence of function) may have severe and constant disequilibrium and motion sensitivity forever. These drivers may have more difficulty driving, particularly during evening hours or on bumpy roads, and may not be safe to drive.

21.5 Compensation

Drivers with vestibular disorders are not able to compensate for their functional impairment.
21.6 Guideline for assessment

21.6.1 Recurrent episodes of vertigo that occur with warning symptoms

This may include drivers with:

- benign paroxysmal positioning vertigo (BPPV)
- Meniere’s disease
- vestibular neuronitis (labyrinthitis)
- migraines, or
- psychogenic vertigo/anxiety (hyperventilation syndrome).

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• warning symptoms do not themselves impair ability to drive</td>
</tr>
<tr>
<td></td>
<td>• warning symptoms are of a sufficient duration to allow a driver to safely pull off the road, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | Stop driving whenever experiencing warning symptoms and do not resume driving until all symptoms associated with the episode have subsided |

| Reassessment | Routine |

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Description of warning symptoms and effect on functional ability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whether the driver has insight into the impact their vestibular dysfunction may have on driving</td>
</tr>
<tr>
<td></td>
<td>History of compliance with prescribed treatment regime</td>
</tr>
<tr>
<td></td>
<td>If known, whether the driver is compliant with any current conditions of licence related to their vestibular dysfunction</td>
</tr>
</tbody>
</table>

| Rationale | The risk from an episodic vestibular dysfunction can be mitigated where the episode is consistently preceded by warning symptoms that are not incapacitating and which last long enough for a driver to safely stop their driving until the episode is over. |
21.6.2 *Recurrent episodes of vestibular dysfunction that occur without warning symptoms – All drivers*

This may include drivers with:
- benign paroxysmal positioning vertigo (BPPV)
- Meniere’s disease
- vestibular neuronitis (labyrinthitis)
- migraines, or
- psychogenic vertigo/anxiety (hyperventilation syndrome).

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it has been at least 6 months since an episode of vestibular dysfunction</td>
</tr>
<tr>
<td></td>
<td>• the treating physician or specialist indicates that their symptoms have been controlled or have abated, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>• Immediately stop driving and report to the authority and treating physician if experiencing an episode of vestibular dysfunction</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>• Routine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>• Date of last episode of vestibular dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Treating physician’s opinion as to whether the symptoms have been controlled or have abated</td>
</tr>
<tr>
<td></td>
<td>• Treating physician’s opinion as to whether the driver has insight into the impact their vestibular dysfunction may have on driving</td>
</tr>
<tr>
<td></td>
<td>• History of compliance with prescribed treatment regime</td>
</tr>
<tr>
<td></td>
<td>• If known or applicable, whether the driver is compliant with any current conditions of licence related to their vestibular dysfunction</td>
</tr>
</tbody>
</table>

| Rationale | Where episodes of vestibular dysfunction are not preceded by warning symptoms or the warning symptoms are not sufficient to allow the driver to safely stop driving, evidence that further episodes are unlikely to occur is required to mitigate the risk. Consensus medical opinion suggests that this evidence should include a minimum period of 6 months without an episode and opinion of the treating physician that this episode-free period reflects effective treatment or abatement of the episodes. |
21.6.3 Drop attacks (Tumarkin’s otolithic crisis)

STANDARD	All drivers eligible for a licence if
	• it has been at least 6 months since experiencing a drop attack, or
	• the treating physician indicates that the attacks have been successfully treated, and
	• the conditions for maintaining a licence are met

| Conditions for maintaining licence | • Immediately stop driving and report to the authority and treating physician if experiencing a drop attack |

| Reassessment | • If attack has occurred in past 12 months, reassess in one year
| | • If no new attacks after initial reassessment, then routine reassessment for commercial drivers and reassess after 5 years for non-commercial drivers
| | • If no new attacks upon subsequent reassessment, then routine |

| Information from health care providers. | • Date of last drop attack or opinion of treating physician as to success of treatment
| | • Treating physician’s opinion as to whether the driver has insight into the impact their condition may have on driving
| | • History of compliance with prescribed treatment regime
| | • If known or applicable, whether the driver is compliant with any current conditions of licence related to their vestibular disorder |

| Rationale | For drop attacks, which occur without warning, evidence that further attacks are unlikely to occur is required to mitigate the risk. Consensus medical opinion suggests that this evidence should be an opinion from the treating physician that the driver has been successfully treated or that 6 months has passed without an attack. |
21.6.4 Single episode of vestibular dysfunction – transient impairment

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• Routine</td>
</tr>
<tr>
<td>Information from health care providers.</td>
<td>None</td>
</tr>
<tr>
<td>Rationale</td>
<td>A single episode of vestibular dysfunction is a transient impairment.</td>
</tr>
</tbody>
</table>

21.6.5 Vestibular disorder resulting in a persistent impairment

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• functional assessments indicate ability required for driving safely</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>None</td>
</tr>
<tr>
<td>Reassessment</td>
<td>• To be determined on an individual basis</td>
</tr>
<tr>
<td>Information from health care providers.</td>
<td>• Results of functional assessment</td>
</tr>
<tr>
<td></td>
<td>• Treating physician’s opinion as to whether the driver has insight into the impact their vestibular disorder may have on driving</td>
</tr>
<tr>
<td></td>
<td>• History of compliance with prescribed treatment regime</td>
</tr>
<tr>
<td></td>
<td>• If known or applicable, whether the driver is compliant with any current conditions of licence related to their vestibular dysfunction</td>
</tr>
<tr>
<td>Rationale</td>
<td>Persistent vestibular dysfunction may cause significant impairment of the functions needed for driving. Decisions about driver fitness should be based on an individual functional assessment.</td>
</tr>
</tbody>
</table>
Chapter 22: Vision impairment

22.1 About vision impairment

Vision impairment is defined as a functional limitation of the visual system and can be manifested as:

- reduced visual acuity
- reduced contrast sensitivity
- visual field loss
- loss of depth perception
- diplopia (double-vision)
- visual perceptual difficulties, or
- any combination of the above.

This chapter focuses on common vision impairments and medical conditions and treatments that can cause vision impairments.

Common vision impairments

Impaired visual acuity

Visual acuity is the ability of the eye to perceive details. It can be described as either static or dynamic. Static visual acuity, the common measure of visual acuity, is defined as the smallest detail that can be distinguished in a stationary, high contrast target (e.g. an eye chart with black letters on a white background). When tested, it is reported as the ratio between the test subject’s visual acuity and standard “normal” visual acuity. Normal visual acuity is described as 20/20 or 6/6 in metric. A person with 20/40 vision (6/12 metric) needs to be 20 feet (6 metres) away to distinguish detail that a person with normal vision can distinguish at 40 feet (12 metres). The standard Snellen chart for measuring visual acuity and a table of standard ratings is included in 22.7.1

Dynamic visual acuity is the ability to distinguish detail when there is relative motion between the object and the observer. Given the nature of driving, dynamic visual acuity would seem to be more relevant to licensing decisions than static visual acuity. However, barriers to the use of dynamic visual acuity for decision-making include:

- the absence of a practicable method of testing dynamic visual acuity
- limited research on its relevancy for driving, and
- the lack of established levels of dynamic visual acuity required for driving safely.
Myopia, hyperopia, presbyopia and astigmatism (refractive errors)

Myopia, hyperopia, presbyopia and astigmatism are conditions associated with reduced visual acuity. They are known as refractive errors and are the result of errors in the focusing of light by the eye.

Myopia (nearsightedness) is a condition in which near objects are seen clearly but distant objects do not come into proper focus. Individuals with normal daytime vision may experience “night myopia.” Night myopia is believed to be caused by pupils dilating to let more light in, which adds aberrations that result in nearsightedness. It is more common in younger individuals and people who are myopic.

Hyperopia (farsightedness) is a condition in which distant objects are seen clearly but close objects do not come into focus. Age-related farsightedness is called presbyopia. It is not a disease, but occurs as a natural part of the aging process of the eye and usually becomes noticeable as an individual enters their early to mid-40s.

Astigmatism is a visual condition that results in blurred vision. It commonly occurs with other conditions such as myopia and hyperopia.

Visual field loss

The visual field is the extent of the area that a person can see with their eyes held in a fixed position, usually measured in degrees. The normal binocular (using both eyes) visual field is 135 degrees vertically and 180 degrees horizontally.

The visual field can be divided into central and peripheral portions. Central vision refers to vision within 30 degrees of the point of fixation or gaze. The macula, a small area in the centre of the retina, is responsible for fine, sharp, straight-ahead central vision. Peripheral vision allows for the detection of objects and movement outside the scope of central vision.

Visual field impairment refers to a loss of part of the normal visual field. The table and diagram on the following two pages provide further information on various types of visual field defects. The term “scotoma” refers to any area where the area of lost visual field is surrounded by normal vision.

Hemianopia, vision loss in one half of the visual field, or quadrantanopia, vision loss in one quarter of the visual field, can occur as a result of a stroke, trauma or tumour. They are not usually caused by a problem with the eye itself.

An important consideration related to hemianopia is the potential for anosognosia. Anosognosia is a condition in which a person with an impairment caused by a brain injury is unaware of the impairment. Research indicates that hemianopic anosognosia is relatively frequent, occurring in approximately two-thirds of those with hemianopia. Unawareness of visual field deficits has an obvious negative impact on safe driving performance.
Types of visual field defects\(^{31}\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitudinal field defect</td>
<td>Loss of all or part of the superior or inferior half of the visual field, but in no case does the defect cross the horizontal median</td>
<td>More common: Ischemic optic neuropathy, hemibranch retinal artery occlusion, retinal detachment
Less common: Glaucoma, optic nerve or chiasmal lesion, optic nerve coloboma</td>
</tr>
<tr>
<td>Arcuate scotoma</td>
<td>A small, arcuate-shaped field loss due to damage to the ganglion cells that feed into a particular part of the optic nerve head, which follows the arcuate shape of the nerve fibre pattern; the defect does not cross the horizontal median</td>
<td>More common: Glaucoma
Less common: Ischemic optic neuropathy (especially nonarteritic), optic disk drusen, high myopia</td>
</tr>
<tr>
<td>Binasal field defect (uncommon)</td>
<td>Loss of all or part of the medial half of both visual fields; the defect does not cross the vertical median</td>
<td>More common: Glaucoma, bitemporal retinal disease (e.g. retinitis pigmentosa)
Rare: Bilateral occipital disease, tumour or aneurysm compressing both optic nerves</td>
</tr>
<tr>
<td>Bitemporal hemianopia</td>
<td>Loss of all or part of the lateral half of both visual fields; the defect does not cross the vertical median</td>
<td>More common: Chiasmal lesion (e.g. pituitary adenoma, meningioma, craniopharyngioma, aneurysm, glioma)
Less common: Tilted optic disks
Rare: Nasal retinitis pigmentosa</td>
</tr>
<tr>
<td>Blind-spot enlargement</td>
<td>Enlargement of the normal blind spot at the optic nerve head</td>
<td>Papilledema, optic nerve drusen, optic nerve coloboma, myelinated nerve fibres at the optic disk, drugs, myopic disk with a crescent</td>
</tr>
<tr>
<td>Central scotoma</td>
<td>A loss of visual function in the middle of the visual field, typically affecting the fovea centralis</td>
<td>Macular disease, optic neuropathy (e.g. ischemic, Leber’s hereditary, optic neuritis), optic atrophy (e.g. from tumour compressing the nerve, toxic/metabolic disease)
Rare: Occipital cortex lesion</td>
</tr>
<tr>
<td>Homonymous hemianopia</td>
<td>Loss of part or all of the left half or right half of both visual fields; the defect does not cross the vertical median</td>
<td>Optic tract or lateral geniculate body lesion; temporal, parietal, or occipital lobe lesion of the brain (stroke and tumour more common; aneurysm and trauma less common). Migraine may cause a transient homonymous hemianopia</td>
</tr>
<tr>
<td>Constriction of the peripheral fields leaving only a small residual central field</td>
<td>Loss of the outer part of the entire visual field in one or both eyes</td>
<td>Glaucoma, retinitis pigmentosa or some other peripheral retinal disorder, chronic papilledema after panretinal photocoagulation, central retinal artery occlusion with cilioretinal artery sparing, bilateral occipital lobe infarction with macular sparing, nonphysiologic vision loss, carcinoma-associated retinopathy
 Rare: drugs</td>
</tr>
</tbody>
</table>

Visual field defects diagram

Monocular Prechiasmal Field Defects:
A
Normal Field Right Eye
B
 blind spot
Central Scotoma
C
Nerve-Fiber Bundle (Arcuate) Scotoma
D
Abinal Scotoma
B
Coco-central Scotoma
F
Enlarged Blind Spot with Peripheral Constriction

Binocular Chiasmal or Postchiasmal Field Defects:
(Left eye) (Right eye)
G
Junctional Scotoma
H
Bitemporal Hemianopia
I
Homonymous Hemianopia
J
Superior Quadrantanopia
K
Inferior Quadrantanopia
L
Homonymous Hemianopia with Macular Sparring

Blindness/low vision

Source National Eye Institute
Total blindness is the complete lack of vision and is often described as no light perception. A person may be considered “blind” even though they have some vision. There is no universally accepted level of visual acuity to define blindness. In North America and most of Europe a person is considered to be legally blind if their visual acuity is 20/200 (6/60) or less in the better eye with the best correction possible, or if their visual field is less than 20 degrees in diameter. The World Health Organization (WHO) defines “low vision” as visual acuity between 20/60 (6/18) and 20/400 (6/120) or a visual field between 10 and 20 degrees in diameter. The WHO definition of “blindness” is visual acuity less than 20/400 (3/60) or a visual field less than 10 degrees.

Monocular vision/Loss of stereoscopic depth perception

Monocular vision refers to having vision in one eye only and is associated with the loss of stereoscopic vision. Stereoscopic vision, in which the brain processes information from each eye to create a single visual image, is integral to depth perception in those with binocular vision.

Impaired colour vision

Individuals with impaired colour vision (colour blindness) lack a perceptual sensitivity to some or all colours. These impairments are usually congenital and, in general, drivers learn to compensate for the inability to distinguish colours when driving.

Impaired contrast sensitivity

Visual contrast sensitivity refers to the ability to perceive differences between an object and its background. Depending on the cause, a loss of contrast sensitivity may or may not be associated with a corresponding loss of visual acuity. Declines in contrast sensitivity are associated with normal aging, and can also result from conditions such as:

- cataracts
- age-related macular degeneration
- glaucoma, and
- diabetic retinopathy.

Impaired dark adaptation and glare recovery

Dark adaptation refers to the process in which the visual system adjusts to a change from a well-lit environment to a dark environment. Glare recovery refers to the process in which the eyes recover visual sensitivity following exposure to a source of glare, such as oncoming headlights when driving at night.
Prolonged dark adaptation is associated with normal aging and results in decreased visual acuity at night. It may also be the result of a medical condition, and where severe, may be referred to as “night blindness.” Night blindness may be caused by a number of medical conditions including:

- retinitis pigmentosa
- vitamin A deficiency
- diabetes
- cataracts, or
- macular degeneration.

As with dark adaptation, individuals require a longer time to recover from glare as they age. Cataracts and corneal edema are also associated with prolonged glare recovery. Individuals may also experience prolonged glare recovery following laser assisted in situ keratomileusis (LASIK) or panretinal laser photocoagulation (PRP) surgery.

A number of illnesses can affect glare recovery time, with prolonged recovery times reported in individuals with diabetes, vascular disease and hypertension. Retinal conditions with demonstrated relationships to prolonged glare recovery include age-related maculopathy, “cured” retinal detachment and central serous retinopathy.

Diplopia

Diplopia (double vision) is the simultaneous perception of two images of a single object. These images may be displaced horizontally, vertically or diagonally in relation to each other.

Diplopia can be binocular or monocular. Binocular diplopia is present only when both eyes are open, with the double vision disappearing if either eye is closed or covered. Monocular diplopia is also present with both eyes open, but unlike binocular diplopia, the diplopia persists when the problematic eye is open and the other eye is closed or covered.

Binocular diplopia, or true diplopia, is an inability of the visual system to properly fuse the images viewed by each eye into a single image. It may be caused by the physical misalignment of the eyes (strabismus) or diseases such as Parkinson’s disease or multiple sclerosis. Two of the most common causes of binocular diplopia in people over 50 are thyroid conditions, such as Grave’s disease, and cranial nerve damage.

Monocular diplopia is not caused by misalignment, but rather by problems in the eye itself. Astigmatism, dry eye, corneal distortion or scarring, vitreous abnormalities, cataracts and other conditions can cause monocular diplopia.

Nystagmus

Nystagmus is an involuntary, rapid, rhythmic movement of the eyeball. The movements may be horizontal, vertical, rotary or mixed. Nystagmus which occurs before 6 months of age is called congenital or early onset, whereas that occurring after 6 months is labelled acquired nystagmus. Early onset nystagmus may be inherited, or the result of
eye or visual pathway defects. In many cases, the cause is unknown. Causes of acquired nystagmus are many and it may be a symptom of another condition such as stroke, multiple sclerosis, or even a blow to the head.

Many individuals with nystagmus have significant impairments in their vision, with some having low vision or legal blindness.

Medical conditions causing vision impairments

Cataracts

A cataract is an opacification or clouding of the crystalline lens of the eye, which blocks light from reaching the retina. Cataracts may be due to a variety of causes. Some are congenital, but few occur during the early years of life. The majority of cataracts are the result of the aging process. The presence of a cataract can interfere with visual functioning by decreasing acuity, contrast sensitivity and visual field.

Diabetic retinopathy

Diabetic retinopathy is the most common eye disease in those with diabetes, results in significant impairments in vision (blurred vision, vision loss) and is a leading cause of blindness in adults. It is caused by changes in the blood vessels of the retina (microvascular retinal changes) as a result of the disease.

There are two types of diabetic retinopathy: background (non-proliferative) and proliferative. Background retinopathy reflects early changes in the retina and often is asymptomatic. However, it may result in decreased visual acuity. Background diabetic retinopathy can progress into a more advanced or proliferative stage.

Proliferative retinopathy is the result of retinal hypoxia (lack of oxygen to the retina) and carries a much graver prognosis. The lack of oxygen to the retina results in a proliferation of new vessels in the retina or on the optic disc (neovascularization). Without treatment, the new vessels can leak blood into the centre of the eye, resulting in blurred vision. Fluid (exudate) also can leak into the centre of the macula (that part of the eye where sharp, straight-ahead vision occurs), a condition called macular edema. The leakage causes swelling of the macula, resulting in blurred vision. Macular edema can occur at any stage of diabetic retinopathy, but is more likely to occur as the disease progresses. Research indicates that approximately half of those with proliferative retinopathy also have macular edema.
An example of the effects of diabetic retinopathy on vision is shown below\(^{33}\).

![Normal vision](image1.png) ![Vision of individual with diabetic retinopathy](image2.png)

Glaucoma

Glaucoma is a group of diseases characterized by increased intraocular pressure. The increased pressure can lead to optic nerve damage, resulting in blindness. Types of glaucoma include adult primary, secondary, congenital and absolute glaucoma. Open angle glaucoma, a type of adult primary glaucoma, is the most common. It is often referred to as the “silent blinder” because extensive damage may occur before the patient is aware of the disease. Early diagnosis and treatment are important for the prevention of optic nerve damage and visual field loss (primarily peripheral vision) due to glaucoma.

An example of the effects of glaucoma on vision is shown below\(^{34}\).

![Normal vision](image3.png) ![Vision of individual with glaucoma](image4.png)

Age-related macular degeneration (ARMD)

Age-related macular degeneration (ARMD) is associated with the advanced stages of age-related maculopathy, or disease of the macula. The macula is the central portion of the retina and is responsible for central vision in the eye. Most individuals with maculopathy have impairments in their central vision. Those with ARMD, however, experience a progressive destruction of the photoreceptors in the macula, resulting in profound central vision loss.

ARMD has two forms, dry and wet. The dry form is the result of atrophy to the retinal pigment, resulting in vision loss due to the loss of photoreceptors (rods and cones) in the central portion of the eye. High doses of certain vitamins and minerals have been shown to slow the progression of the disease and reduce associated vision loss.

Wet ARMD (neovascular or exudative) is due to abnormal blood vessel growth in the eye, leading to blood and protein leakage in the macula. The bleeding, leaking and scarring from these blood vessels eventually result in damage to the photoreceptors, with a rapid loss of vision if left untreated. Treatment for wet ARMD has improved. Recent pharmaceutical advancements have resulted in compounds that, when injected directly into the vitreous humor, can cause regression of the abnormal blood vessels, leading to an improvement in vision.

An example of the effects of ARMD on vision is shown below35.

![Normal vision](image1) ![Vision of individual with macular degeneration](image2)

Retinitis pigmentosa

Retinitis pigmentosa is the term given to a group of hereditary retinal diseases that result in the degeneration of rod and cone photoreceptors. The diseases cause progressive visual loss, ending in blindness. Night blindness is an early symptom of retinitis pigmentosa, followed by a constriction of the peripheral visual field. Loss of central vision typically occurs late in the course of the illness.

Typically, symptoms are not prominent in childhood, but with progressive degeneration of the photoreceptor cells, vision is gradually lost during adolescence and adulthood.

22.2 Prevalence

Common vision impairments

Blindness/low vision

Based on WHO classifications, the prevalence of low vision and blindness in Canada is 35.6 and 3.8 per 10,000 individuals, respectively. Among individuals with some vision loss (vision worse than 20/40), cataract and visual pathway disease were the most common causes, together accounting for 40% of visual impairment. Age-related macular degeneration and other retinal diseases were the next most common causes of vision loss, with diabetic retinopathy and glaucoma less frequently encountered as causes of visual impairment.

Myopia, hyperopia, presbyopia and astigmatism (refractive errors)

The prevalence of visual conditions such as astigmatism, hyperopia, myopia and presbyopia in Canada is difficult to determine due to the absence of population based studies evaluating the ocular health of Canadians.

Night myopia is relatively common among younger individuals, with an estimated prevalence of 38% in those 16 to 25 years of age.

Monocular vision, impaired contrast sensitivity, impaired dark adaptation and glare recovery

There are no data on the prevalence of monocular vision, impaired contrast sensitivity or impaired dark adaptation and glare recovery.

Visual field loss including hemianopia

Research indicates that the prevalence of visual field loss for those age 16 to 60 years is between 3% and 3.5%, rising to 13% for those 65 and older.

Diplopia

There are no data on the prevalence of diplopia.

Nystagmus

Although the prevalence of nystagmus is not accurately known, the condition is believed to affect around 1 in 5,000 individuals.

Medical conditions causing vision impairments

Cataracts

Canadian data on the prevalence of cataracts are lacking, but statistics from the United States indicate that approximately 17% of Americans aged 40 years and older have a cataract on at least one eye. Cataracts frequently occur bilaterally (in both eyes), with
the prevalence of bilateral cataracts greater among women than men. Overall prevalence of cataracts increases with age, leading to increasing prevalence in the future as the population ages. United States census estimates project that the prevalence of cataracts will increase by 50% by the year 2020.

Cataracts are more common in women and affect Caucasians somewhat more frequently than other races, particularly with advancing age. Risk factors for age-related cataracts include:

- diabetes
- prolonged exposure to sunlight
- use of tobacco, and
- use of alcohol.

Diabetic retinopathy

Individuals with both Type 1 and Type 2 diabetes are at-risk for diabetic retinopathy. At present there is little published information about the prevalence of diabetic retinopathy in Canada. A study from the United States indicates that, after 20 years from the onset of diabetes, over 90% of people with Type 1 diabetes and more than 60% of people with Type 2 diabetes will have diabetic retinopathy.

Glaucoma

Approximately 67 million people worldwide have glaucoma, with more than 250,000 affected in Canada. Two percent of people over the age of 40 have glaucoma and the prevalence increases to 4% to 6% in people over 60. Those at increased risk for developing glaucoma include Blacks, those over the age of 60 and individuals with a family history of glaucoma.

Glaucoma is one of the leading causes of blindness, accounting for between 9% and 12% of all cases of blindness. The rate of blindness from glaucoma is between 93 and 126 per 100,000 population 40 years or older.

Age-related macular degeneration (ARMD)

In Canada using 2010 data, more than two million people over the age of 50 have some form of ARMD, with the numbers projected to triple in the next 25 years due to the aging of the population. Dry ARMD is more common than wet ARMD, accounting for 85% of all cases of ARMD. The greatest risk factor for acquiring macular degeneration is age. Other risk factors include:

- gender (females more at risk than males)
- race (Caucasians more at risk than Blacks)
- smoking, and
- family history.
Retinitis pigmentosa

The worldwide prevalence of retinitis pigmentosa is approximately 1 in 4,000. Based on this prevalence rate, approximately 8,500 individuals in Canada currently suffer from retinitis pigmentosa.

22.3 **Vision impairments and adverse driving outcomes**

Common vision impairments

Impaired visual acuity

There is a considerable body of research examining the relationship between static visual acuity and driving performance. Despite the obvious importance of vision when driving, research has failed to find a strong relationship between the two. One of the primary reasons for this is methodological. Given that most jurisdictions have minimum vision requirements for licensing, individuals with significant vision impairments are not licensed and therefore not included in measures of driving performance.

Monocular vision

Research on monocular vision and driving is limited, with most studies conducted before 1980. The evidence suggests that monocular drivers have higher crash and traffic violation rates.

Impaired contrast sensitivity

In general, the available research suggests that impairments in contrast sensitivity are associated with impairments in driving performance. However, those associations are insufficient to support specific decisions regarding loss of contrast sensitivity and continued driving. More research is required to develop screening tools for contrast sensitivity that are valid and reliable in the driver fitness context.

Impaired dark adaptation and glare recovery

Despite its obvious relevance to safe driving performance, there is little in the way of research to assist the medical community or authorities in making decisions related to dark adaptation, glare recovery and driving.

Visual field loss including hemianopia

A significant body of literature now exists on the relationship between visual field loss and driving performance, as measured either by crashes, on-road performance or simulator studies. Few studies have been done on hemianopia and driving. Taken together, the results from the on-road and crash literature suggest that visual field deficits can and do compromise driving performance. However, the current body of evidence fails to inform on the extent of deficit in the visual field that must be present before driving is impaired.
Diplopia and Nystagmus

There is little or no research on diplopia or nystagmus and driving performance.

Medical conditions causing vision impairments

Cataracts

Results on the impact of cataracts on driving performance are mixed, with some studies showing increased risk of crashes, ranging from 1.3 to 2.5 times higher than those without cataracts. However, other studies have failed to find an association between cataracts and crash rates. Results from studies that have examined self-reported difficulties in driving performance are more uniform, with the majority of participants reporting difficulties in many aspects of driving.

Notably, cataract surgery results in an improvement in visual functioning. However, a significant percentage of drivers continue to report difficulties in driving, particularly at night. An important consideration is when driving can safely resume following cataract surgery. Unfortunately, there is a paucity of data to inform on this issue. Of equal importance are the effects of wait times for cataract surgery on visual functions related to driving. Current literature indicates wait times of 6 months or longer result in decrements in vision that may have an impact on safe driving performance.

Diabetic retinopathy

The majority of research on diabetic retinopathy and driving is concerned with the effects of laser surgery (PRP) for proliferative diabetic retinopathy on visual fields. PRP reduces the risk of severe visual loss in proliferative diabetic retinopathy but also is associated with visual field loss and reductions in peripheral vision.

Glaucoma

There is evidence that drivers with glaucoma are at a significantly greater risk for impaired driving performance than those without the disease, likely due to loss of visual field.

Age-related macular degeneration (ARMD) and retinitis pigmentosa

There is little research on the relationship between ARMD or retinitis pigmentosa and driving performance.
22.4 Effect on functional ability to drive

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of driving impairment and assessment approach</th>
<th>Primary functional ability affected</th>
<th>Assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision impairment</td>
<td>Persistent impairment: Functional assessment</td>
<td>Sensory - Vision</td>
<td>Medical assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Visual assessment field test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional assessment</td>
</tr>
</tbody>
</table>

Drivers with impaired visual acuity may lack the ability to perceive necessary details while driving. Visual field impairments may interfere with driving by limiting the area that a driver can see.

Drivers with reduced contrast sensitivity may have difficulty seeing traffic lights or cars at night. Limitations in research and testing preclude standards for impairments in contrast sensitivity, dark adaptation or glare recovery, although some individuals with these impairments may not be able to drive safely.

22.5 Compensation

The loss of certain visual functions can be compensated for adequately, particularly in the case of long-standing or congenital impairments. When a person becomes visually impaired, the capacity to drive safely varies with the ability to compensate. As a result, there are people with visual deficits who do not meet the vision standards for driving but who are able to drive safely.

Corrective lenses
Most drivers can compensate for a typical loss of visual acuity from myopia, hyperopia, astigmatism or presbyopia by wearing eyeglasses or contact lenses.

Telescopic lenses/other low vision aids
Low vision and telescopic lens aids cannot be used to meet the vision standard.

Telescopic (bioptic) lenses are sometimes used to assist drivers with low vision. A telescopic lens typically is mounted at the top half of a regular spectacle lens, and provides the driver with a magnified view of objects (e.g. text or detail of traffic signs that otherwise could be seen only at distances too short for a safe or timely stop). For the most part, the driver views the road through the spectacle lens, looking intermittently through the telescopic lens to read road signs, determine the status of traffic lights or scan ahead for road hazards.
Although telescopic spectacles, hemianopia aids and other low vision aids may enhance visual function, there are significant problems associated with their use in driving a motor vehicle. These include the loss of visual field, magnification causing apparent motion and the illusion of nearness. There has been little research to evaluate the use of telescopic lenses for driving by drivers with low vision. Although limited, studies indicate that drivers with low vision who drive with telescopic lenses have higher crash rates.

Prism lenses/eye patch

Drivers with binocular diplopia may be able to compensate for their impairment with the use of prism lenses or an eye patch.

Driving in daylight only

Drivers who have a vision impairment may be able to compensate for their impairment by driving during daylight hours only.

Strategies to compensate for visual field loss

Drivers with visual field loss may be able to compensate for their reduced visual field by practicing more rigorous scanning techniques involving more frequent eye and head movement.

Exceptional Cases

The loss of some visual functions can be compensated for adequately, particularly in the case of long-standing or congenital impairments. When an individual becomes visually impaired, the capacity to drive safely varies with his/her compensatory abilities. As a result, there may be individuals with visual deficits who do not meet the vision standards for driving but who are able to drive safely. On the other hand, there may be individuals with milder deficits who do meet the vision standards but who cannot drive safely.

In these exceptional situations, it is recommended that the individual undergo a special assessment for the fitness to drive. The decision on fitness to drive can only be made by the appropriate licensing authorities. However, it is recommended the following information be taken into consideration: (1) favourable reports from the ophthalmologist or optometrist; (2) good driving record; (3) stability of the condition; (4) no other significant medical contraindications; (5) other references (e.g. professional, employment, etc.); (6) functional assessment.

In some cases it may be reasonable to grant a restricted or conditional licence to an individual to ensure safe driving. It may also be appropriate to make such permits exclusive to a single class of vehicles.
22.6 Guidelines for assessment

22.6.1 Impaired visual acuity – Non-commercial drivers

| STANDARD | Non-commercial drivers eligible for a licence if
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• visual acuity is not less than 20/50 (6/15) with both eyes open and examined together, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a licence are met</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>• Wear corrective lenses while driving, if a driver requires corrective lenses in order to meet the standard above</td>
</tr>
</tbody>
</table>
| Reassessment | • Routine if the condition causing the visual acuity loss is not progressive
| | • To be determined on an individual basis for drivers with impaired visual acuity that is progressive such as cataracts, macular degeneration, glaucoma and diabetic retinopathy |
| Information from health care providers | • Uncorrected and corrected standard rating of visual acuity for both eyes open and examined together. Standards for testing visual acuity are outlined in 22.7.1 |
| Rationale | There is little research evidence regarding the level of visual acuity required for driving fitness. The minimum acuity requirement in the standard is based on consensus medical opinion in Canada. |

22.6.2 Impaired visual acuity – Commercial drivers

| STANDARD | Commercial drivers eligible for a licence if
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 4 (Taxi) and 5 (commercial)</td>
<td>• visual acuity is not less than 20/40 (6/12) with both eyes open and examined together. Worse eye not less than 20/200 (6/60).</td>
</tr>
<tr>
<td>Class 1-4 (Emergency)</td>
<td>• visual acuity is not less than 20/30 (6/9) with both eyes open and examined together. Worse eye not less than 20/100 (6/30).</td>
</tr>
<tr>
<td>Conditions for maintaining licence</td>
<td>• Wear corrective lenses while driving, if a driver requires corrective lenses in order to meet the standard above</td>
</tr>
</tbody>
</table>
Reassessment

- Routine if the condition causing the visual acuity loss is not progressive
- To be determined on an individual basis for drivers with impaired visual acuity that is progressive such as cataracts, macular degeneration, glaucoma and diabetic retinopathy

Information from health care providers

- Uncorrected and corrected standard rating of visual acuity for both eyes open and examined together. Standards for testing visual acuity are outlined in 22.7.1

Rationale

There is little research evidence regarding the level of visual acuity required for driving fitness. The minimum acuity requirement in the standard is based on consensus medical opinion in Canada.

22.6.3 Visual field loss – Non-commercial drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Non-commercial drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>visual field is at least 120 continuous degrees along the horizontal meridian and 15 continuous degrees above and below fixation with both eyes open and examined together</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | None |

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Routine if the condition causing the visual field loss is not progressive (e.g. eye trauma, stroke, head injury)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To be determined on an individual basis for drivers with medical conditions that cause progressive visual field loss, such as:</td>
</tr>
<tr>
<td></td>
<td>o retinitis pigmentosa</td>
</tr>
<tr>
<td></td>
<td>o diabetic retinopathy</td>
</tr>
<tr>
<td></td>
<td>o vascular retinopathy</td>
</tr>
<tr>
<td></td>
<td>o glaucoma, or</td>
</tr>
<tr>
<td></td>
<td>o brain tumour</td>
</tr>
</tbody>
</table>

| Information from health care providers | Binocular field print using an approved visual field testing technique. Standards for testing visual field loss are outlined in 22.7.2 |

| Rationale | There is little research evidence regarding the level of visual field required for driving fitness. The minimum visual field requirement in the standard is based on consensus medical opinion in Canada. |
22.6.4 Visual field loss – Commercial drivers

STANDARD	Commercial drivers eligible for a licence if Class 4 (Taxi) and 5 (commercial)
	• visual field is at least 120 continuous degrees along the horizontal meridian and 15 continuous degrees above and below fixation with both eyes open and examined together
	Class 1-4 (Emergency)
	• visual field is at least 150 continuous degrees along the horizontal meridian and 20 continuous degrees above and below fixation with both eyes open and examined together

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

Reassessment	Routine if the condition causing the visual field loss is not progressive (e.g. eye trauma, stroke, head injury)
	Reassess drivers with diabetic retinopathy annually
	To be determined on an individual basis for drivers with other medical conditions that cause progressive visual field loss, such as:
	o retinitis pigmentosa
	o vascular retinopathy
	o glaucoma, or
	o brain tumour

| Information from health care providers | Binocular field print using an approved visual field testing technique. Standards for testing visual field loss are outlined in 22.7.2 |

| Rationale | There is little research evidence regarding the level of visual field required for driving fitness. The minimum visual field requirement in the standard is based on consensus medical opinion in Canada. |
22.6.5 Loss of stereoscopic depth perception or monocularity – All drivers

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>All drivers eligible for a licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• standards for visual acuity and visual fields are met</td>
</tr>
<tr>
<td></td>
<td>• the treating ophthalmologist or optometrist indicates sufficient time has elapsed since loss of stereoscopic depth perception to allow the driver to adjust and compensate for the change in vision.</td>
</tr>
<tr>
<td></td>
<td>• Where required, a road test or other functional assessment indicates the driver is able to compensate for any loss of functional ability necessary for driving, and</td>
</tr>
<tr>
<td></td>
<td>• the conditions for maintaining a license are met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for maintaining licence</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Routine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Date of loss of stereoscopic depth perception</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opinion of a vision specialist whether the driver has adjusted and compensated for the change in vision</td>
</tr>
</tbody>
</table>

| Rationale | Drivers with monocular vision can compensate for the loss of stereoscopic depth perception by using visual cues, such as the relative size of objects, and generally have adequate depth perception for everyday activities such as driving. The Canadian Ophthalmological Society notes that a driver who has recently lost the sight of an eye or stereoscopic vision may require a few months to recover the ability to judge distance accurately. |
22.6.6 Diplopia

This guideline applies to drivers with diplopia within the central 40 degrees of primary gaze (i.e. 20 degrees to the left, right, above, and below fixation).

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Eligible for any class of licence if</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• the diplopia can be corrected using prism lenses so that they no longer have diplopia within the central 40 degrees of primary gaze</td>
</tr>
<tr>
<td></td>
<td>• visual acuity and visual fields are met with prisms</td>
</tr>
<tr>
<td></td>
<td>• the treating ophthalmologist or optometrist indicates that adequate adjustment has occurred, and</td>
</tr>
<tr>
<td></td>
<td>• when required a functional assessment indicates the driver is able to compensate for any loss of functional ability necessary for driving</td>
</tr>
</tbody>
</table>

| Conditions for maintaining licence | Wear corrective lenses while driving (if a driver requires prism lenses) |

<table>
<thead>
<tr>
<th>Reassessment</th>
<th>Determined on an individual basis if the diplopia is the result of a progressive condition; as recommended by the treating physician or in accordance with the reassessment standard for that medical condition.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Otherwise, routine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information from health care providers</th>
<th>Description of corrective mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opinion of vision specialist whether adequate adjustment has occurred</td>
</tr>
</tbody>
</table>

| Rationale | Consensus medical opinion in Canada indicates that an individual who has diplopia within the central 40 degrees of primary gaze is not eligible for a licence unless they can compensate for this impairment by wearing an eye patch or prism lenses while driving. |
22.6.7 Impaired colour vision

| STANDARD | All drivers eligible for a licence if
| • Drivers can discriminate between different traffic lights |
Conditions for maintaining licence	None
Reassessment	• Routine
Information from health care providers	• Opinion of treating physician whether a lack of insight or cognitive impairment impairs the ability to compensate
Rationale	Impaired colour vision is usually congenital and in general, drivers learn to compensate for the inability to distinguish colours when driving.

22.7 Standards for testing visual functions

22.7.1 Visual acuity

The distance visual acuity of drivers should be tested using the refractive correction (spectacles or contact lenses) that they will use for driving. The examiner should assess visual acuity under binocular (both eyes open) conditions. It is recommended that visual acuity be assessed using a Snellen chart (see below) or equivalent at the distance appropriate for the chart under bright photopic lighting conditions of 275 to 375 lux (or greater than 80 candelas/m²). Charts that are designed to be used at 3 meters or greater are recommended.
22.7.2 Visual field

When a confrontational field assessment is carried out to screen for visual field defects the following procedure should be used at a minimum:

1. The examiner is standing or seated approximately 0.6 m (2 feet) in front of the examinee with eyes at about the same level.
2. The examiner asks the examinee to fixate on the nose of the examiner with both eyes open.
3. The examiner extends his or her arms forward, positioning the hands halfway between the examinee and the examiner. With arms fully extended, the examiner asks the examinee to confirm when a moving finger is detected.
4. The examiner should confirm that the ability to detect the moving finger is continuously present throughout the area specified in the applicable visual acuity.
field standard. Testing is recommended in an area of at least 180° horizontal and 40° vertical, centred around fixation.

If a defect is detected, the driver should be referred to an ophthalmologist or optometrist for a full assessment. During a full assessment, binocular testing is required and the following techniques are acceptable:

1. Goldmann III/4e and V4e isopters
2. Humphrey Esterman test
3. Humphrey 81, 120, 135, or 246 point screener. Set test strategy to single intensity or 3 zone and all other parameters to standard. Two zone Humphrey testing is inadequate.
4. Medmont 700 Driving Field
5. Other visual field techniques will be accepted if appropriate.

Please note:
Goldman, Esterman and Humphrey 135 are the only tests that will test 150 degrees of horizontal vision as required for professional (class 1 to 4) drivers.

22.7.3 Contrast sensitivity

Assessment of contrast sensitivity is recommended for applicants referred to an ophthalmologist or optometrist for vision problems related to driving. Contrast sensitivity may be a more valuable indicator of visual performance in driving than Snellen acuity. The Canadian Ophthalmological Society therefore encourages increased use of this test as a supplement to visual acuity assessment.

Contrast sensitivity can be measured by means of several commercially available instruments:

- the Pelli-Robson letter contrast sensitivity chart
- either the 25% or the 11% Regan low-contrast acuity chart
- the Bailey-Lovie low-contrast acuity chart, or
- the VisTech contrast sensitivity test.

The testing procedures and conditions recommended for the specific test used should be followed.
Chapter 23: Medical Review for Drivers

The functional declines associated with aging are well documented. These functional declines in healthy aging drivers are unlikely to lead to unsafe declines in driving performance, except in the case of extreme old age. However, aging is also associated with increased risk for a broad range of medical conditions, such as visual impairments, musculoskeletal disorders, cardiovascular disease, diabetes, and cognitive impairment and dementia. These medical conditions and medications used to treat them may affect fitness to drive.

Because of the association between age and many chronic medical conditions, aging drivers are more likely to have one or more of these conditions. A 2003 survey found that 33% of Canadians age 65 and older had 3 or more chronic medical conditions. The survey also found that the average number of chronic conditions increases with age.

All Canadian jurisdictions have the legal authority to examine a driver’s fitness and ability to drive. Authorities are specifically concerned with individuals whose fitness and ability to drive may be impaired by medical conditions. This includes individuals who may be impaired by medications or treatment regimes prescribed as treatment for a medical condition, general debility or a lack of stamina.

As a result, Canadian jurisdictions have developed a medical review for drivers as noted below:

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>Recommended Frequency of Medical Review</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 1, 2, 3, 4</td>
</tr>
<tr>
<td></td>
<td>• On application</td>
</tr>
<tr>
<td>Class 5 and 6 and 7</td>
<td>• At least every 5 years to age 45, and</td>
</tr>
<tr>
<td>Class 5 and 6 and 7</td>
<td>• thereafter every 3 years to age 65</td>
</tr>
<tr>
<td>Class 5 and 6 and 7</td>
<td>• annually at 65 and over</td>
</tr>
<tr>
<td></td>
<td>• at age 75 and 80</td>
</tr>
<tr>
<td></td>
<td>• every 2 years over age 80</td>
</tr>
</tbody>
</table>
PART 3:

APPENDICES
Appendix 1: Canadian Driver Licence Classes

The National Safety Code (NSC) in Canada is a set of 16 standards developed by the member jurisdictions of CCMTA in consultation with the motor carrier industry to ensure road safety and facilitate the safe and efficient movement of people and goods across Canada.

The NSC is designed to create a comprehensive code of minimum performance standards for the safe operation of passenger and commercial vehicles. It has a specific focus on those responsible for the operation of commercial vehicles on the road, including trucks, buses, tractors and trailers.

NSC Standard 4 – The Classified Driver Licensing is comprised of seven distinct licence classes, each designating a certain type of vehicle in accordance with the degree of capability necessary for its operation. In summary:

- Classes 1 to 4 are generally described as commercial classes of driver licence.
- Class 5 is required to drive a passenger vehicle
- Class 6 is required for driving a motorcycle
- Class 7 is a learner/instructional driver licence

Please see NSC Standard 4 (Classified Driver Licensing System) for additional details on the standard.
Appendix 2: Canada – US Reciprocity Agreement

Effective April 1, 1992, the US Department of Transport required all American commercial drivers to hold an American Commercial Drivers Licence (CDL).

In preparation for this requirement, a reciprocity agreement between Canada and the US completed 1989. This ensured that commercial driver’s licences issued by Canadian provinces and territories under the National Safety Code Standards are recognised in the US. In fact, to ensure the one driver, one licence concept, the holder of a provincial or territorial commercial driver licence is prohibited from obtaining a CDL. The US Federal Register of Tuesday, May 23, 1989 proclaimed the Reciprocity Agreement.

Subsequently on December 30, 1998, Canada and the US signed reciprocity letters on medical fitness requirements for operators of commercial motor vehicles. The elements prescribed in the reciprocity agreement related to Canadian provinces and territories adhering to the National Safety Code (NSC) and that the licensing and testing standards were deemed equivalent to US standards. A similar evaluation by jurisdictions deemed the US CDL to be equivalent to the NSC.

Letters between the US and Canadian federal governments were used as the agreement, and when taken together constituted the understanding between Canada and the US respecting reciprocity of commercial driver licences.

By virtue of the agreement, the two countries medical standards were deemed equivalent with the exception of the requirements regarding (Cdn) (i) insulin-dependent diabetic drivers, (ii) hearing impaired drivers, (iii) drivers with epilepsy and (iv) drivers operating under a medical waiver or who are operating under medical grandfather rights who are prohibited from operating in international commerce.

Both countries agreed to adopt a unique identifier code to be displayed on the licence and the driving record to identify a commercial driver who is not qualified or disqualified from operating a commercial vehicle in the other country.

In December 2001, CCMTA agreed the Canadian identifier would be “W”, and defined as: “restricted commercial class - Canada only”. In December 2008, FMCSA announced it will implement the identifier “V” which will indicate the US driver is only allowed to drive in the US and is not medically qualified to drive in Canada. The identifier “V” was implemented on January 2014.

As part of the Canada – US agreement commercial drivers (Class 1, 2, 3 and 4 licence holders) are required to file a satisfactory medical report on application, every 5 years to age 45, at least every 3 years from age 46 to 65 and annually thereafter.

On September 24, 2019, both Canada and the United States agreed to remove the Code W identifier for Canadian insulin-dependent diabetic drivers who are well controlled. These commercial motor vehicle drivers can now drive in Canada and the United States.
Appendix 3: Provincial/Territorial Contact Information

Provincial/Territorial contact information for reporting potentially unfit drivers*
Driver assessment centres and rehabilitation resources can also be located in your area by contacting these offices.

Coordonnées des organismes gouvernementaux auxquels signaler les conducteurs potentiellement inaptes*
Vous pouvez également communiquer avec eux pour obtenir les coordonnées des centres d’évaluation des conducteurs et des ressources de réadaptation de votre région.

ALBERTA
Driver Fitness and Monitoring Branch
Alberta Transportation
Government of Alberta
Main Floor, Twin Atria Building
4999–98 Avenue
Edmonton AB T6B 2X3
Tel (780) 427-8230
Toll free in Alberta 310-0000
Fax (780) 422-6612
https://www.alberta.ca/driver-fitness-monitoring.aspx

BRITISH COLUMBIA/COLOMBIE-BRITANNIQUE
RoadSafetyBC
PO Box 9254, Stn Prov Gov
Victoria BC V8W 9J2
Tel (250) 387-7747
Toll free (855) 387-7747
Fax (250) 952-6888
https://www2.gov.bc.ca/gov/content/transportation/driving-and-cycling/driver-medical/driver-medical-fitness/driver-medical-fitness-information-for-medical-professionals

MANITOBA
Driver Fitness
Manitoba Public Insurance
Box 6300
Winnipeg MB R3C 4A4
Tel (204) 985-1900
Toll free (866) 617-6676
Fax (204) 953-4992
https://www.mpi.mb.ca/Pages/health-care-professionals.aspx
NEW BRUNSWICK/NOUVEAU-BRUNSWICK
Registrar of Motor Vehicles
Department of Public Safety
Motor Vehicle Branch
20 McGloin Street
PO Box 6000
Fredericton NB E3B 5H1
Tel (506) 453-2410
Fax (506) 462-2130
https://www2.gnb.ca/content/gnb/en/departments/public-safety.html

NEWFOUNDLAND AND LABRADOR/TERRE-NEUVE-ET-LABRADOR
Medical Review Officer
Motor Registration Division
Service Newfoundland and Labrador
149 Smallwood Drive
St. John’s NL A1N 1B5
Tel (877) 636-6867
Fax (709) 729-4360
http://www.servicenl.gov.nl.ca/department/drivers_contact.html#mrd

NORTHWEST TERRITORIES/TERRITOIRES DU NORD-OUEST
Compliance & Licensing
Department of Infrastructure
Government of the Northwest Territories
Box 1320
Yellowknife NT X1A 2L9
Tel (867) 767-9088
Fax (867) 873-0120
http://www.dot.gov.nt.ca/About/Contact

NOVA SCOTIA/NOUVELLE-ÉCOSSE
Transportation and Infrastructure Renewal
Road Safety Division
1672 Granville Street 6th floor
PO Box 1652
Halifax, NS B3J 2Z3
Tel (902) 424-5732
Fax (902) 424-0772
https://novascotia.ca/sns/rmv/licence/medicals.asp
NUNAVUT
Motor Vehicles Division
Department of Economic Development and Transportation
Government of Nunavut
PO Box 10
Gjoa Haven NU X0B 1J0
Tel (867) 360-4615
Fax (867) 360-4619
https://gov.nu.ca/edt/faq/where-can-i-get-drivers-licence

ONTARIO
Driver Improvement Office
Medical Review Section
Ministry of Transportation
77 Wellesley Street
Box 589
Toronto ON M7A 1N3
Tel (416) 235-1773
Toll free (800) 268-1481
Fax (416) 235-3400 or (800) 304-7889
Email: drivermedicalreview@ontario.ca

PRINCE EDWARD ISLAND/ÎLE-DU-PRINCE-ÉDOUARD
Department of Transportation, Infrastructure and Energy
Driver Records Section
Highway Safety Division
Box 2000
Charlottetown PE C1A 7N8
Tel (902) 368-5210 or (902) 368-5234
Fax (902) 368-5236
Email: driverrecords@gov.pe.ca

QUEBEC/QUÉBEC
Service de l’évaluation médicale et du suivi du comportement
Société de l’assurance automobile du Québec
333, boul. Jean-Lesage
CP 19600
Québec QC G1K 8J6
Tel (418) 643-5506; outside Quebec (800) 561-2858
Fax (418) 643-4840
www.saaq.gouv.qc.ca
SAKATCHEWAN
Saskatchewan Government Insurance
Medical Review Unit
2260–11th Avenue, 3rd floor
Regina SK S4P 2N7
Tel (306) 775-6176
Toll free (844)-855-2744 x 6176
Fax (306) 347-2577 or (866) 274-4417
Email: mruinquiries@sgi.sk.ca
www.sgi.sk.ca/individuals/medical/index.html

YUKON
Driver Sanctions Coordinator
Motor Vehicles
Highways and Public Works
Government of Yukon
Box 2703 (W-22)
Whitehorse YT Y1A 2C6
Tel (867) 667 3563
Fax (867) 393 7448
Email: motor.vehicles@gov.yk.ca

*As of February 2020 / En date de février 2020